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FOREWORD 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-2 ELEMENTARY NUMBER 

THEORY 

Introduction To The Block 

Number theory, branch of mathematics concerned with properties of the 

positive integers (1, 2, 3, …). Sometimes called ―higher arithmetic,‖ it is 

among the oldest and most natural of mathematical pursuits. 

Number theory has always fascinated amateurs as well as professional 

mathematicians. In contrast to other branches of mathematics, many of 

the problems and theorems of number theory can be understood by 

laypersons, although solutions to the problems and proofs of the 

theorems often require a sophisticated mathematical background. 

Until the mid-20th century, number theory was considered the purest 

branch of mathematics, with no direct applications to the real world. The 

advent of digital computers and digital communications revealed that 

number theory could provide unexpected answers to real-world 

problems. At the same time, improvements in computer technology 

enabled number theorists to make remarkable advances in factoring large 

numbers, determining primes, testing conjectures, and solving numerical 

problems once considered out of reach. 
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UNIT 8: PRIMITIVE ROOTS 

STRUCTURE 

8.0 Objective 

8.1 Introduction 

8.2The Integer Modulo N 

8.3 The Primitive Roots 

8.4 Summary 

8.5 Keywords 

8.6 Questions 

8.7 Suggested Readings 

8.8 Answers To Check Your Progress 

8.0 OBJECTIVES 

Understand the concept of the integer modulo n. 

Understand the importance of primitive roots and their theoretical 

application 

8.1 INTRODUCTION 

In modular arithmetic, a branch of number theory, a number g is 

a primitive root modulo n if every number a cop 

rime to n is congruent to a power of g modulo n. That is, g is a primitive 

root modulo n if for every integer a cop rime ton, there is an 

integer k such that g
k
 ≡ a (mod n). Such a value k is called 

the index or discrete logarithm of a to the base g modulo n. Note 

that g is a primitive root modulo n if and only if g is a generator of 

the multiplicative group of integers modulo n. 

Gauss defined primitive roots in Article 57 of the Disquisitions 

Arithmetical (1801), where he credited Euler with coining the term. In 

Article 56 he stated that Lambert and Euler knew of them, but he was the 

first to rigorously demonstrate that primitive roots exist for a prime n 

8.2 THE INTEGER MODULO N 
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8.1.1:  Definition 
Given a positive integer n > 1and an integer a such that gcd(a, n) = 1, the 

smallest positive integer d for which a
d
  ≡ 1 mod n is called the order 

of a modulo n. Note that Euler's theorem says that   ≡1(modn), so 

such numbers dd indeed exist. The order of a mod n is sometimes written 

as ordn(a) for short. 

There are ϕ(9) = 6 distinct congruence classes mod 9 of integers that are 

relatively prime to 9, namely 1,2,4,5,7,8. Compute their orders mod 9. 

 The powers of 1 are  1,1,1,…. The order of 1 is 1. 

 The powers of 2 are  2,4,8,7,5,1,…. The order of 2 is 6. 

 The powers of 4 are  4,7,1,…. The order of 4 is 3. 

 The powers of 5 are  5,7,8,4,2,1,…. The order of 5 is 6. 

 The powers of 7 are  7,4,1,…. The order of 7 is 3. 

 The powers of 8 are  8,1,…. The order of 8 is 2 

8.2.2 Basic Properties 
 

(1) If a
m 

≡ 1 (modn), the ordn(a)∣m. 

(2) ordn(a)∣υ(n); if p is a prime, then ordp(n)∣(p−1) for any n. 

(3)(3) If a
ℓ
≡a

m
(modn), then ℓ≡m(mod ordn(a)). 

In order to prove property (1), let d =ordn(a). Since a
m

 ≡ 1(modn)  a
mx+dy 

≡ 1(modn) forv any x nd y. By Bezout's identity, there exist x and y such 

that  mx+dy=gcd(d,m). Then, from the minimality of d, it follows that   d 

≤ gcd(m,d), which cannot hold unless they are equal and d|m. 

(Another way to see (1) is that the minimum period of a periodic 

sequence divides any other period, essentially by the division algorithm.) 

Property (2) follows from property (1) and Euler's theorem, and property 

(3) follows from property (1) applied to  ℓ−m. 

Example:  Prove that  n∣υ(a
n
−1) for all positive integers a and n. 

It is immediate that : a
n
  ≡1 (mod a

n
−1), and a

d
 ≡1 (mod 

a
n
−1) implies  (a

n
−1)∣( a

d
 −1), so  d ≥ n. Then the result follows from 

property (1) above. 

Example: Prove that any prime factor of the  nth Fermat number  

 is congruent  2
 n+1. 

Show that there are infinitely many prime 

numbers of the form 2
n
 k+1 for any fixed n. 
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Solution: Consider a prime p such that  p∣  ; that is, 

≡−1(modp). Then   ≡1(modp) and consequently ordp     (2)∣ 

2
n+1

.  

So ordp (2) = 2
k 
for some  k ≤ n+1. We will prove that in fact k = n + 1. 

Indeed, if this is not the case, then ord p(2)∣2n  
and so ≡ 1(modp). But 

this implies that 1 ≡ −1(modp), so p =2, but this is impossible.  

Therefore, we have found that ordp(2) = 2
n+1 

and so 2
n+1∣(p−1) by 

Property (1) above. 

The second part is a direct consequence of the first. Indeed, it is enough 

to prove that there exists an infinite set of Fermat numbers \large 

( )nk > a, any two relatively prime. Then we could take a prime 

factor of each such Fermat number and apply the first part to obtain that 

each such prime is of the form 2
n
k+1.  

Not only is it easy to find such a sequence of co-prime Fermat numbers, 

but in fact any two distinct Fermat numbers are relatively prime. Indeed, 

suppose that  d∣gcd( +1, +1). Then  ≡ 1(mod d) and 

so d∣ −1.  

Combining this with  d∣ +1, we obtain a contradiction. Hence both 

parts of the problem are solved. 

8.2.3 Theorem  
 

Let the integer a have order k modulo n. Then a
h
 = 1 (mod n) if and only 

if k Ih; in particular, k | (n). 

Proof. Suppose that we begin with k |h, so that h = jk for some integer j. 

Because a
k
 = 1 (mod n), With reference to the Congruence Theorem,  

(a
k
)
j
 ≡ lj

 (mod n) or a
h
 = 1 (mod n). Conversely, let h be any positive 

integer satisfying a
h
 = 1 (mod n).  

By the Division Algorithm, there exist q and r such that h = qk + r, where 

0 ≤S r < k. Consequently, 

    a
h
 = a 

qk+r
 = (a

k
)
q
a' 

 

By hypothesis, both a
h
 = 1 (mod n) and a

k
 = 1 (mod n), the implication of 

which is that a' = 1 (mod n). Because 0 ::S r < k, we end up with r = 0; 
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otherwise, the choice of k as the smallest positive integer such that ak =1 

(mod n) is contradicted. 

 Hence, 

    h = qk, and k |h. 

8.2.4.Theorem  
 If the integer a has order k modulo n, then a

i 
= a

j
 (mod n) if and only 

if i ≡ j (mod k). 

Proof. First, suppose that a
i≡ a

j 
(mod n), where i ≥ j. Because a is 

relatively prime ton, we may cancel a power of a to obtain a 
i-j

 ≡ 1 (mod 

n). According to Theorem 8.1.3, this last congruence holds only if k Ii - j, 

which is just another way of saying that i ≡ j (mod k). 

 

Conversely, let i ≡  j (mod k). Then we have i = j + qk for some integer 

q. By the definition of k, a
k ≡1 (mod n), so that 

 

    a
i
 ≡a 

j+qk
 =a

j
(a

k
)

q
 =a

j
 (mod n) 

 

which is the desired conclusion. 

8.2. 5.Corollary  
 If a has order k modulo n, then the integers a1, a2 , … , ak are 

incongruent 

modulo n. 

Proof. If a
i ≡ a

j 
(mod n) for 1 ≤ i ≤ j ≤k, then the theorem ensures that i 

≡ j (mod k). But this is impossible unless i = j. 

 

8.2.6. Theorem  
If the integer a has order k modulo n and h > 0, then a

h
 has order k 

/gcd(h, k) modulo n. 

 

Proof. Let d = gcd(h, k). Then we may write h = h1d and k = k1d, with 

gcd (h1 , k1) = 1. Clearly, 

    (a
h
)
k1

' = ( )
k/d

 = = 1 (mod n) 

If a
h
 is assumed to have order r modulo n, then Theorem 8.1.3 asserts 

that r | k1. On the other hand, because a has order k modulo n, the 
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congruence 

    a
hr

 ≡ (a
h
)
r
 ≡ 1 (mod n) 

indicates that k | hr; in other words, k1d | h1dr or k1 | h1r. But gcd(k1, h1) = 

1, and therefore k1 | r. This divisibility relation, when combined with the 

one obtained earlier, gives k k 

 

 

proving the theorem. 

 

The preceding theorem has a corollary for which the reader may supply a 

proof. 

8.2.7. Corollary  

Let a have order k modulo n. Then ah also has order k if and only if 

gcd(h , k) = 1. 

8.3 THE PRIMITIVE ROOTS 

Let us start by computing the powers 3
i 
modulo 7 for 0 ≤ i < υ(7) = 6. 

We obtain 3
0
 = 1, 3

1 
= 3, 3

2
 ≡ 2, 3

3
 ≡ 6, 3

4
 ≡ 4, 3

5
 ≡ 5. Hence, the set {3

i 
| 

0 ≤ i < υ(7)} is a reduced residue system modulo 7, that is every integer 

a not divisible by 7 is congruent to 3
i
 for a unique integer i modulo υ(7). 

This fact allows us to replace calculations using only multiplication and 

exponentiation modulo 7 by calculations using addition modulo υ(7) 

instead. 

 

Example: Solve the equation x
5
 ≡ 6 (mod 7). 

 

Solution: Let x ≡ 3
y
 (mod 7). Since 6 ≡ 3

3
 (mod 7), the given equation 

can now be written 3
5y

 ≡ 3
3
 (mod 7), which is equivalent to the 

congruence 5y ≡ 3 (mod 6). The latter congruence has the unique 

solution y ≡ 3 (mod 6), and hence our original equation has the unique 

solution x ≡ 6 (mod 7). 

Motivated by Example, we will investigate numbers m with the property 

that there exists a number g such that {g
i 
| 0 ≤ i < υ(m)} is a reduced 
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residue system. That not all numbers m have this property follows from 

the following example. 

 

Example: Since 1
2
 ≡ 3

2
 ≡ 5

2
 ≡ 7

2
 ≡ 1 (mod 8) and υ(8) = 4, it follows 

that {a
i
 | 0 ≤ i < 4} is never equal to a reduced residue system modulo 8. 

8.3.1Proposition  
 

Let m be a positive integer and a any integer such that (a, m) = 1. Define 

     A = {k ∈ Z | a|k| ≡ 1 (mod m)}.  

 

Then A is an ideal in Z. 

 

Proof. We have to prove that the set A is closed under subtraction, i.e. 

that j, k ∈ A ⇒ j − k ∈ A. To prove this we may assume j ≥ k, because j – 

k belongs to A if and only if k − j belongs to A. 

 

Suppose j, k ∈ A. If j ≥ k ≥ 0, then aj ≡ ak ≡ 1 (mod m), and hence a
j−k 

≡ 

a
j−k 

a
k
 = a

j
 ≡ 1 (mod m). If j ≥ 0 > k, then a

j
 ≡ a

−k
 ≡ 1 (mod m), and we 

obtain  

     a 
j−k

 = a
j
a

−k
 ≡ 1 · 1 = 1 (mod m).  

Finally, if 0 > j ≥ k, then 

     a
−j

 ≡ a
−k

 ≡ 1 (mod m),  

and we conclude that  

     a
j−k 

≡ a
−j

a
j−k 

= a
−k

 ≡ 1(mod m).  

 

Thus, in each case j − k ∈ A. 

Note that A contains nonzero integers, because υ(m) belongs to A by 

Euler‘s theorem. The ideal A is generated by a unique positive integer h, 

which is the smallest positive integer belonging to A, that is ah ≡ 1 (mod 

m) while aj ≢ 1 (mod m) for 1 ≤ j < h. 

8.3.2 Definition  
The positive generator h of A, i.e. the smallest positive integer such that 

ah ≡ 1 (mod m), is called the order of a modulo m and is denoted by ord 

a. 
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The order ord a of course depends on the modulus m, but since the 

modulus will always be fixed during a calculation, this ambiguity in the 

notation causes no difficulties. 

For any modulus m, ord 1 = 1. 

 

Example: Modulo 8 we have ord 3 = ord 5 = ord 7 = 2. 

Example: Let us compute the order of the numbers 2, 3 and 6 modulo 7. 

Our calculations before Example 1 show that ord 3 = 6.  

Since 2
2
 ≡ 4 (mod 7) and  

2
3
 ≡ 1 (mod 7), ord 2 = 3,  

and since 6
2
 ≡ 1 (mod 7), ord 6 = 2. 

The following theorem is an immediate consequence of the fact that the 

ideal A is generated by h = ord a. 

 

8.3.3 Theorem  
 Assume (a, m) = 1 and write h = ord a modulo m. Then 

 

(i) a
n
 ≡ 1 (mod m) if and only if h | n; 

 

(ii) h | υ(m); 

 

(iii) a
j
 ≡ a

k
 (mod m) if and only if j ≡ k (mod h); 

 

(iv) the numbers 1, a, a2, . . . , ah−1 are incongruent modulo m, and each 

power an is congruent to one of these modulo m; 

 

(v) ord ak = h/(h, k). 

 

Proof. (i) follows from the definition of a generator of an ideal. 

 

(ii) follows from (i) and Euler‘s theorem. 

 

(iii) Assume k ≥ j ≥ 0; then ak ≡ aj (mod m) holds if and only if ak−j ≡ 1 

(mod m), because we may divide the former congruence by aj since (a, 
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m) = 1. The conclusion now follows from (i). 

(iv) is of course a consequence of (iii). 

(v) By (i), (a
k
)
n
 ≡ 1 (mod m) ⇔ kn ≡ 0 (mod h). We can divide the right 

hand congruence by k provided we change the modulus to h/(h, k). Thus,  

 (a
k
)
n
 ≡ 1 (mod m) ⇔ n ≡ 0 (mod h/(h, k)). 

The smallest positive number n satisfying the last congruence is n = h/(h, 

k); by definition, this is the order of a
k
 modulo m. 

Theorem 8.2.3 (ii) implies that ord a ≤ υ(m) for every number a which is 

relatively prime to m.  

8.3.4 Definition  
 

 Assume that (g, m) = 1. If the order of g modulo m equals υ(m), then g 

is called a primitive root modulo m, or a primitive root of m. 

 

Example 5 In Example 4 we calculated the order of 3 modulo 7 and 

found that ord 3 = 6 = υ(7). Consequently, 3 is a primitive root modulo 

7. 

Example 6 Not every integer has a primitive root. If m = 8, then a
2
 ≡ 1 

for every odd integer and hence ord a ≤ 2 < 4 = υ(8) for every a 

relatively prime to 8, that is 8 has no primitive roots. 

 

8.3.5 Theorem  
Suppose g is a primitive root modulo m. Then  

(i) {1, g, g
2
, . . . , g

υ(m)−1
} is a reduced residue system modulo m; 

(ii) g
j
 ≡ g

k
 (mod m) if and only if j ≡ k (mod υ(m)); 

(iii) g
k
 is a primitive root modulo m if and only if (k, υ(m)) = 1. 

In particular, if there exists a primitive root modulo m, then there are 

precisely υ(υ(m)) primitive roots. 

 

Proof. Theorem 8.2.5 is just a special case of Theorem 8.2.3. 

Example:   We have found that 3 is a primitive root modulo 7. Since 

υ(υ(7)) = υ(6) = 2, there are 2 primitive roots. The other primitive root is 

3
5
, i.e. 5 (mod 7). 
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We will show that the only positive integers having primitive roots are 1, 

2, 4, p
k
 and 2p

k
, where p is an odd prime and k an arbitrary positive 

integer. We start by proving that each prime has primitive roots; for this 

we will need the following two lemmas. 

8.3.6 Lemma  
 If a has order h and b has order k modulo m, and if (h, k) = 1, then ab 

has order hk modulo m. 

 

Proof. Let r be the order of ab. Since  

 (ab)
hk

 = (a
h
)
k
(b

k
)
h
 ≡ 1

k
 · 1

h
 = 1 (mod m),  

we conclude that r | hk.  

To complete the proof, we have to show that hk | r. Note that  

 

b
rh 

≡ (a
h
)
r
b

rh
 = (ab)

rh
 ≡ 1 (mod m), and hence k | rh. 

 

Since (h, k) = 1 it follows that k | r. In a similar way, we show that h | r. 

Since (h, k) = 1 it now follows that hk | r. 

 

Example: Working modulo 7 we have ord 2 = 3 and ord 6 = 2. 

Consequently, since  

2 · 6 ≡ 5 (mod 7), ord 5 = ord(2 · 6) = 2 · 3 = 6. 

8.3.7 Lemma  
Let p and q be primes, and suppose that qk | (p − 1). Then there exists a 

number a of order q
k
 modulo p. 

Proof. The congruence ≡ 1 (mod p) has exactly q
k
 roots. By Theorem 

8.2.3 (i), the order of such a root is a divisor of q
k
. If a is a root of order 

less than q
k
, then a is the root of the congruence ≡ 1 (mod p), but 

this congruence has exactly q
k−1 

roots. Hence, there are exactly qk − 

qk−1 incongruent numbers of order precisely q
k
. 

8.3.8 Theorem  
 If p is a prime, then there exist exactly υ(p − 1) primitive roots modulo 

p. 

Proof. By the last statement of Theorem 8.2.5, it is enough to show that 

there exists at least one primitive root modulo p. Let p − 1 = 
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 be the factorization of p − 1 into distinct primes. By 

Lemma 8.2.7 there are integers ai  of order for i = 1, 2, . . . , r. The 

numbers are pairwise relatively prime, so by repeated use of Lemma 

8.5.6 we see that g = a1a2 · · · ar has order p − 1, that is g is a primitive 

root modulo p. Suppose that g is a primitive root modulo m. If (a, m) = 1, 

then Theorem 8.2.5 implies that there is a unique integer i, with 0 ≤ i ≤ 

υ(m) − 1 such that gi ≡ a (mod m). This fact allows us to make the 

following definition. 

8.3.9 Definition  
Let g be a primitive root of m, and suppose (a, m) = 1. The smallest 

nonnegative integer i such that gi ≡ a (mod m) is called the index of a (to 

the base g) and is denoted by ind a. 

The index depends on both the modulus m and the root g, but since m 

and g are usually fixed, the notation should cause no confusion.  

There is a strong similarity between logarithms and indices, and the 

following theorem states the most important properties. The proof is 

simple and is left to the reader. 

 

8.3.10 Theorem  
Suppose g is a primitive root modulo m, and let ind a denote the index of 

a to the base g. 

 

(i) ind 1 = 0 and ind g = 1. 

 

(ii) a ≡ b (mod m) if and only if ind a = ind b. 

 

(iii) ind ab ≡ ind a + ind b (mod υ(m)). 

 

(iv) ind a
k
 ≡ k ind a (mod υ(m)), for all nonnegative integers k. 

8.3.11 Theorem  
 Let m be a positive integer having a primitive root, and suppose 

(a, m) = 1. Then the congruence xn ≡ a (mod m) has a solution if and 

only if 
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(1)      a
υ(m)/(n,υ(m)) 

≡ 1 (mod m). 

 

If the congruence x
n
 ≡ a (mod m) is solvable, then it has exactly (n, 

υ(m)) incongruent solutions. 

 

Proof. Let g be a primitive root modulo m, and let d = (n, υ(m)). Taking 

indices, we see that the congruence xn ≡ a (mod m) holds if and only if n 

ind x ≡ ind a (mod υ(m)). This congruence is solvable if and only if d | 

ind a, and if solutions exist, then there are exactly d incongruent 

solutions. 

To complete the proof, we show that (1) holds if and only if d | ind a. 

Taking indices, we see that (1) is equivalent to (υ(m)/d) ind a ≡ 0 (mod 

υ(m)), which holds if and only if d | ind a. 

If m has a primitive root, then the solutions of a solvable congruence x
n
 ≡ 

a (mod m) can be found using indices, provided we compute (or have 

available) a table of indices for the given modulus m.  

Since every prime modulus has a primitive root, we have the following 

corollary of Theorem 8.2.11. 

 

8.3.12 Corollary  
Suppose p is prime and (a, p) = 1. Then the congruence xn ≡ a (mod p) is 

solvable if and only if 

     a
(p−1)/(n,p−1) 

≡ 1 (mod p). 

 

Remark. The corollary gives an efficient procedure for determining 

whether the congruence xn ≡ a (mod p) is solvable, but to actually find a 

solution is more difficult. However, if (n, p − 1) = 1, this is relatively 

easy. Use the Euclidean Algorithm to find positive integers s and t such 

that  

     sn = t(p − 1) + 1;  

then 

     a
sn

 = a
t(p−1) 

a ≡ a (mod p),  
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that is a
s
 is a solution of the congruence x

n
 ≡ a (mod p). 

 

8.3.13 Corollary  
Suppose that m has a primitive root and that n | υ(m). Then the 

congruence xn − 1 ≡ 0 (mod m) has exactly n roots. 

 

Proof. The congruence x
n
 ≡ 1 (mod m) is obviously solvable. Hence, by 

Theorem 8.2.11 it has (n, υ(m)) = n incongruent solutions. We next show 

that if p is an odd prime, then pk has primitive roots for each k. 

 

8.3.14 Theorem  
Suppose that p is an odd prime. 

 

(i) If g is a primitive root modulo p, then g + np is a primitive root 

modulo p
2
 for exactly p − 1 values of n modulo p. 

 

(ii) If g is a primitive root modulo p2, then g is a primitive root modulo 

p
k
 for all k ≥ 2. 

Proof. Let h denote the order of g +np modulo p2. (h may depend on n.) 

Then h | υ(p
2
), that is h | p(p − 1). 

But (g + np)
h
 ≡ 1 (mod p2) implies (g + np)

h
 ≡ 1 (mod p), and by the 

binomial theorem, 

     

  (g + np)
h
 = g

h
 +   ≡ g

h
 (mod p),  

  

And hence g
h
 ≡ 1 (mod p). Since g has order p − 1, it follows that (p − 1) 

| h. 

Thus h = p − 1 or h = p(p − 1). In the latter case, g + np is a primitive 

root of p
2
, and in the former case it is not. We will prove that the former 

case arises only for one of the p possible values of n. 

 

Let f(x) = x
p−1

−1; then g is a root of the congruence f(x) ≡ 0 (mod p) and 

f‘(g) = (p − 1)g
p−2 ≢ 0 (mod p), since (g

p−2
, p) = 1. Hence, there is a 

unique root of the form g + np of the congruence f(x) ≡ 0 (mod p
2
). 

This proves our claim. 
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(ii) It suffices to prove that if g is a primitive root modulo p
k
, k ≥ 2, then 

g is also a primitive root modulo p
k+1

. Let h be the order of g modulo 

p
k+1

; then h | υ(p
k+1

), that is h | p
k
(p − 1). Because g

h
 ≡ 1 (mod p

k+1
) 

implies g
h
 ≡ 1 (mod p

k
) and g is a primitive root modulo pk, υ(pk) must 

divide h, that is p
k−1

(p − 1) | h. 

Thus either  

   h = p
k−1

(p − 1) or h = p
k
(p − 1) = υ(p

k+1
).  

 

In the latter case, g is a primitive root modulo p
k+1 

as claimed. We must 

show that the former case is excluded. 

 

Let t = υ(p
k−1

); then g
t 
≡ 1 (mod p

k−1
) by Euler‘s theorem, and therefore 

gt = 1+ np
k−1

 for some integer n. If p | n then we would have gt ≡ 1 (mod 

p
k
), which contradicts the fact that g is primitive root modulo p

k
. Thus, p∤ 

n.  

By the binomial theorem 

   g
pt 

= (g
t
)

p
 = (1 + np

k−1
)p = 1 + np

k 
+   n

2
p

2k−2 
+ . . .  

   ≡ 1 + np
k
 (mod p

k+1
). 

Here, we have used that fact that the integer  n
2
p

2k−2 
=  n

2
p

2k−1
 

is divisible by p
k+1

, because 2k − 1 ≥ k + 1 when k ≥ 2, and the remaining 

omitted terms in the expansion contain even higher powers of p. 

 

Since p ∤ n, we now conclude that  

     g
pt ≢ 1 (mod pk+1).  

Therefore, h ≠  pt = pυ(p
k−1

) = p
k−1

(p − 1), and the proof is complete. 

 

Example: Since 2
2
 ≡ −1 ≢ 1 (mod 5), we conclude that the order of 2 

modulo 5 must be 4, that is 2 is a primitive root of 5.  

By Theorem 8.2.14, 2 + 5n is a primitive root of 25 for exactly four 

values of n, 0 ≤ n ≤ 4. Since 

υ(25) = 20, the primitive roots of 25 have order 20. The order h modulo 

25 of an arbitrary number a is a divisor of 20. If h < 20, then either h | 4 

or h | 10, so it follows that a
4 
≡ 1 (mod 25) or a

10
 ≡ 1 (mod 25). Hence, to 
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find whether a number a has order 20 it is enough to compute a
4
 and a

10
 

modulo 25; the order is 20 if and only if none of these two powers are 

congruent to 1. For a = 2 we obtain 2
2
 ≡ 4, 2

4
 ≡ 16, 2

8 
≡ 6 and 2

10
 ≡ 24. 

Hence, the order of 2 is 20, i.e. 2 

is a primitive root of 25. 

For a = 7 we obtain 7
2
 ≡ −1 and 7

4
 ≡ 1 (mod 25), that is the order of 7 is 

4, and 7 is not a primitive root of 25. Of course, it now follows that 12, 

17 and 22 are primitive roots of 25. 

By Theorem8.2.14 (ii), 2 is a primitive root of 5
k
 for all k. 

8.3.15 Theorem  
 Suppose that p is an odd prime, and let g be a primitive root modulo p

k
. 

If g is odd, then g is also a primitive root modulo 2p
k
, and if g is even, 

then g + p
k 
is a primitive root modulo 2p

k
. 

 

Proof.  If g is odd, then g
j
 ≡ 1 (mod 2) for every j ≥ 1. Thus g

j
 ≡ 1 (mod 

2p
k
) if and only if g

j
 ≡ 1 (mod pk), and hence the order of g modulo 2p

k 

is equal to the order of g modulo p
k
, namely υ(pk). Since υ(2p

k
) = υ(p

k
), 

g is a primitive root of 2p
k
. If g is even, then g cannot be a primitive root 

of 2p
k
, for a primitive root is always relatively prime to the modulus. But 

g + p
k
 is odd and, since it is congruent to g modulo pk, it is also a 

primitive root modulo p
k
. Hence, g + p

k 
is a primitive root of 2p

k
 by the 

preceding argument. 

By above Example, 2 is a primitive root of 5
k
 for each k. Hence, 2+5k is 

a primitive root of 2 · 5k for each k. In particular 7 is a primitive root of 

10, and 27 is a primitive root of 50. By the same example, 17 is also a 

primitive root of 5
k
 for each k. Since 17 is odd, it follows that 17 is a 

primitive root of 2 · 5
k
 for each k. 

8.3.16 Theorem  
There exists a primitive root modulo m if and only if m = 1,2, 4, p

k
, or 

2p
k
, where p is an odd prime and k is an arbitrary positive integer. 

 

Proof. First note that 1, 2, and 4 have primitive roots (1, 1, and 3, 

respectively). Theorems 8.2.8, 8.2.14, and 8.2.15 imply that p
k
 and 2p

k 

have primitive roots whenever p is an odd prime and k is an arbitrary 

positive integer. 
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Conversely, to prove that these are the only positive integers having 

primitive roots, assume m > 2 has a primitive root. By Corollary 8.2.13, 

the congruence x
2 

≡ 1 (mod m) has exactly 2 incongruent solutions 

(because 2 | υ(m) for all m ≥ 3). Now implies that m must be either 4, p
k
, 

or 2p
k
, where p is an odd prime. 

 

If G is a general finite group with identity element e, then the order ord a 

of an element a is defined to be the smallest positive integer n satisfying 

a
n
 = e, while the order of the group, ord G, is defined to be the number of 

elements in G.  

If h = ord a, then h| ord G and {e, a, a
2
, . . . , a

h−1
} is a subgroup of G. 

This subgroup coincides with G if ord a = ord G, and G is then called a 

cyclic group with a as a generator. 

Applying these general notions to the specific case when G is the group 

 of all residue classes modulo m that are relatively prime to m, we see 

that the order h of an integer a modulo m coincides with the order of the 

residue class a in , that h|υ(m), that a number g is a primitive root 

modulo m if and only if the residue class g generates , and that there 

exists a primitive root modulo m if and only if the group is a cyclic 

group. Using the language of groups we can state Theorem 8.2.16 as 

follows: The group is cyclic if and only if m = 1, 2, 4, p
k
 or 2p

k
, 

where p is an odd prime and k is an arbitrary positive integer. 

Check your Progress 

1. Define order of modulo.  

 

 

 

2. What is primitive root?  

 

 

3.Prove ‗If a has order h and b has order k modulo m, and if (h, k) = 1, 

then ab has order hk modulo m‘.  
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8.4 SUMMARY 

Primitive roots play a crucial role in many theoretical investigations 

8.5KEYWORDS 

1. Order –The arrangement of things in relation to each other 

according to a particular sequence or pattern. 

2. Notation -  A system of symbols used to represent special 

things. 

3. Cyclic Group – A cyclic group is a group that can be 

generated by a single element  

4. Identity Element -  In mathematics, an identity element or 

neutral element is a special type of element of a set with respect 

to a binary operation on that set, which leaves any element of the 

set unchanged when combined with it 

5.  Arbitary Positive integer: An arbitrary integer is basically 

the same as any integer. If a math problem says: "Let n be an 

arbitrary integer", it means that n can be any integer. A random 

integer in other words. 

8.6 QUESTION FOR REVIEW 

1. Prove, If  a
p
 ≡1(modn) with prime p and  n∤a−1, then  ordn  a = p. 

2. Find the smallest Rn divisible by 13. 

3. Determine all the primitive roots of the primes p = 11, 19, and 23, 

expressing each as a 

power of some one of the roots. 

4. For a prime p > 3, prove that the primitive roots of p occur in 

incongruent pairs r, r' 

where rr' =1 (mod p). 

[Hint: If r is a primitive root of p, consider the integer r' = r
P-2

.] 

5. Given that 3 is a primitive root of 43, find the following: 

(a) All positive integers less than 43 having order 6 modulo 43 
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8.8 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1. Provide the definition and example – 8.1 

2. provide the explanation and example – 8.2 

3.Provide the proof with example – 8.2.6  
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UNIT 9: FERMAT’S LITTLE 

THEOREM 

STRUCTURE 

 

9.0   Objective 

9.1  Introduction 

9.2  Euler‘s Theorem 

9.3  Little Fermat‘s Theorem 

9.4  The Fermat-Kraitchik Factorization Method 

9.5  Wilson‘s Theorem 

9.6  Summary 

9.7  Keywords 

9.8  Questions 

9.9  Suggested Readings 

9.10  Answers To Check Your Progress 

9.0 OBJECTIVE 

Understand the concept of Euler‘s theorem 

Comprehend the Little Fermat‘s Theorem 

Understand the algorithm of Fermat‘s Factorization 

Comprehend the Wilson‘s Theorem 

9.1 INTRODUCTION 

Pierre de Fermat first wrote what would become his ‖Little Theorem‖ in 

1679. As was typical of Fermat, he did not include a proof for fear the 

proof would be too long [1]. The first proof of this theorem was 

published more than fifty years later by Leonhard Euler, in 1736 [1]. 

Using the modular arithmetic notation published by Johann Carl 

Friedrich Gauss in 1801[1], 

9.2 EULER’S THEOREM 
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Definition For [a] ∈ Um, the powers of the residue class are given by[a]
1
 

= [a], [a]
2
 = [a][a], etc. 

 

9.2.1 Lemma 

 If [a] ∈ Umthen [a]
n∈ Um for n ≥ 1, and [a]

n
= [a

n
]. 

 

Proof.We will check this by induction on n. The n = 1 base case is 

trivial:[a]
1
 = [a] = [a

1
], and by assumption [a] ∈ Um.  

For the inductive step, supposethat [a]
k
= [a

k
] ∈ Um. for k ≥ 1 and 

consider the k + 1-st power. 

[a]
k+1

 = [a]
k
[a] = [a

k
][a] = [a

k
a] = [a

k+1
] 

By induction the theorem holds for all n ≥ 1.  

 

9.2.2 Theorem (Euler’s Theorem) 
 If m >0, and a is relatively prime to m,then a

υ(m)
≡ 1 (mod m). 

Proof. For m >0, we have that gcd(a, m) = 1 if and only if [a] ∈ Um. The 

priorresult gives that a
n
 ≡ 1 (mod m) ⇐⇒[a

n
] = [1] ⇐⇒[a]

n
= [1].  

Therefore,Euler‘s Theorem is equivalent to the following: if m >0 and [a] 

∈ Umthen 

[a]
υ(m)

 = [1]. 

We will write X1, X2, . . . , Xυ(m) for the residue classes in Um.We first 

show that if X ∈ Umthen the set O = {XX1, XX2, . . . , XXυ(m)}equals the 

set Um. Containment one way is easy: any member of O is a memberof 

Umby the closure property of groups. For containment the other way, 

consider Xi∈ Um,and note that Theorem of groups shows that the 

equation X  x = Xi has a solution x = Xj for some j, so Xi = XXjis an 

element of O. 

 

Next, for any X ∈ Um consider the product XX1XX2· · · XXυ(m). 

Theassociative property says that we can parenthesize this term in any 

way, andthe prior paragraph then gives that the product is (XX1)(XX2) · · 

· (XXυ(m)) =X1X2· · · Xυ(m). 

 

Finally, let A = X1X2· · · Xυ(m), and for any X ∈ Umconsider Xυ(m)A.The 
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commutative property of Group Theorem gives that 

  X
υ(m)

A = X
υ(m)

X1X2· · · X
υ(m)

= (XX1)(XX2) · · · (XX
υ(m)

). 

 

The prior paragraph then shows that X
υ(m)

A = A. 

 

Multiplying both sides of that equation by the inverse A∗of A gives 

 

(X
υ(m)

A)A∗= X
υ(m)

(AA∗) = X
υ(m)

[1] = X
υ(m)

on the left and AA∗= [1] on 

the right, as desired.  

 

Example Fix m = 12. The positive integers a < m with gcd(a, m) = 1are 

1, 5, 7 and 11, and so υ(m) = 4.  

 

Solutions: We will check Euler‘s result for all four. 

First, 1
4
≡ 1 (mod 12) is clear.  

Next, 5
2
≡ 1 (mod 12) since 12 | 25−1, and 

so 5
4
≡ (5

2
)

2
≡ 12 (mod 12).  

From that one, and because 7 ≡ −5 (mod 12) 

and 4 is even, 7
4
≡ 5

4
 (mod 12) ≡ 1 (mod 12).  

And, fourth, 11 ≡ −1 (mod 12)and again since 4 is even we have that  

11
4
≡ (−1)

4
 (mod 12) ≡ 1 (mod 12). 

 

9.3 FERMAT’S LITTLE THEOREM 

 

9.3.1 Theorem (Fermat’s Little Theorem) 

 If p is prime, and a is relatively prime top, then a
p−1 

≡ 1 (mod p). 

Proof. Where p is prime, υ(p) = p − 1.  

 

Example Fermat‘s Little Theorem can simplify the computation of a
 
 

mod p where p is prime. Recall that if a
n
 ≡ r (mod p) where 0 ≤ r < p, 

thena
n
mod p = r. We can do two things to simplify the computation:  

(i) replace aby a mod p, and (ii) replace n by n mod (p − 1). 

 

Suppose that we want to calculate 1234
7865435

 mod 11. Note that 1234 
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≡−1 + 2 − 3 + 4 (mod 11), that is, 1234 ≡ 2 (mod 11). Since gcd(2, 11) = 

1 wehave that 2
10

≡ 1 (mod 11).  

Now 7865435 = (786543) · 10 + 5 so 

2
7865435

≡ 2
(786543)·10+5

(mod 11) 

≡ (2
10

)
786543

· 2
5
 (mod 11) 

≡ 1
786543 

· 2
5 
(mod 11) 

≡ 2
5 
(mod 11), 

and 2
5
 = 32 ≡ 10 (mod 11).  

Hence, 1234
7865435

≡ 10 (mod 11). It follows that1234
7865435

 mod 11 = 10. 

 

Remark Fermat‘s theorem is called ―little ‖ as a contrast with 

Fermat‘sLast Theorem, which states that xn + yn = zn has no solutions x, 

y, z ∈ Nwhen n >2. For many years this was the most famous unsolved 

problem in Mathematics, until it was proved by Andrew Wiles in 1995, 

over 350 years afterit was first mentioned by Fermat.  

 

Corollary 9.3.2 .  
If pis a prime, then a

p
 ≡ a (mod p) for any integer a.  

 

Proof. When p | a, the statement obviously holds; for, in this setting, a
p  

≡ 0 ≡ a (mod p). If p ∤ a, then according to Fermat's theorem, we have 

a
p-1 ≡ 1 (mod p). When this congruence is multiplied by a, the conclusion 

a
p
 ≡ a (mod p) follows. There is a different proof of the fact that a

p ≡ a 

(mod p), involving induction on a. If a= 1, the assertion is that 1
p ≡1 

(mod p), which clearly is true, as is the case a = 0. Assuming that the 

result holds for a, we must confirm its validity for a + 1. In light of the 

binomial theorem, 

 

where the coefficient is given by 
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Our argument hinges on the observation that  =0 (mod p) for 1 ≤ k ≤ 

p - 1. To see this, note that 

 

 

 

by virtue of which p | k! or p| . But p | k! implies that p | j for some j 

satisfying 1 ≤ j ≤ k ≤ p -1, an absurdity. Therefore, p | . or, 

converting to a congruence statement, 

 

 

 

The point we wish to make is that 

     (a+ 1)
p
 =a

p
 + 1 =a+ 1 (mod p) 

where the rightmost congruence uses our inductive assumption. Thus, the 

desired conclusion holds for a + 1 and, in consequence, for all a ≥ 0. If a 

happens to be a negative integer, there is no problem: because a≡  r (mod 

p) for some r, where 0 ≤ r ≤ p - 1, we get a
p
 ≡ r

P
 ≡ r ≡ a (mod p). 

Lemma 9.3.3:  
 If p and q are distinct primes with aP =a (mod q) and aq =a (mod p), 

then a
pq

 ≡ a (mod pq). 

 

Proof. The last corollary tells us that (a
q
)
p
 ≡ a

q 
(mod p), whereas a

q ≡ a 

(mod p) holds by hypothesis. Combining these congruences, we obtain  a 

pq 
 ≡  a (mod p) or, in different terms, pI a

pq
 -a. In an entirely similar 

manner, q | a
pq

 -a. pq | a
pq

 -a, which can be recast as a
pq

 ≡ a (mod pq). 

 

Example: Compute 11
470

 (mod 37).  

 

Solution: Since 37 is a prime, by Fermat‘s little theorem,  

    a
36

 ≡ 1 (mod 37).  

Hence   

    a
r+36b

 ≡ a
r
 (mod 37). 
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 Write, using the Euclidean algorithm,  

    470 = 36b + r,   0 ≤ r < 37 

           = 36 · 13 + 2  

     ⇒ 11
470

 ≡ 11
2
 (mod 37)  

       ≡ 10 (mod 37). 

 

Example: Show that the inverse of 5 modulo 101 is 5
99 

 

Solution: By Fermat‘s Little Theorem, 5 
100

 ≡ 1 (mod 101), so  

5 
99

 · 5 ≡ 5 · 5
 99

 ≡ 1 (mod 101),  

which by definition means that 5
99

 is the inverse of 5 modulo 101 

 

CHECK YOUR PROGRESS 1 

 

1. Define power of residue class  

 

 

 

2. State and explain Fermat‘s Little Theorem  

 

 

9.4 THE FERMAT-KRAITCHIK 

FACTORIZATION METHOD 

 

Fermat's factorization method, named after Pierre de Fermat, is based on 

the representation of an odd integer as the difference of two squares: 

 

The Fermat method can be applied to arbitrary odd n to try to find a 

divisor/complementary divisor pair that are relatively close together, if 

such a pair exists. 

 

Suppose that n = ab with a > b odd. Notice that n = ab 
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If a and b are close together, then: 

 

is relatively small; specifically we assume    

 

  is not much larger than  

 

To quantify this final statement note that 

 

 

and hence 

 

Since 

 

 

 

we obtain 
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9.4.1 The Algorithm: Fermat Factorization 
 

Moral: If n is the product of two distinct odd numbers that are close 

together, then 

 

where t is slightly larger than   and s is relatively small. How can we 

use this to factor n? Set t0 = and successively compute 

 

until one obtains 

 

 

 

If we set t = t0 + k, then n = t
2
 − s

2
 = (t + s)(t − s).h 

 

Remarks:  

 Because of our assumption on (a − b)/2, this process is 

guaranteed to stop after roughly ∊2
 steps.  

 The factors (t + s) and (t − s) are nontrivial because t ∼  

while s ∼ 0. 

 

Example: Apply the Fermat Factorization Method to factor n = 

2251644881930449333. 

 

Solution:  We have  t0 = d  = 1500548194. 

 

Moreover, we find that 

 

 

: Fe 
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so that t = t0 + 3 = 1500548197 and s = 97926. Hence n = pq with 

p = t + s = 1500646123, 

q = t − s = 1500450271, 

both of which turn out to be prime.  

 

Note  

 

 

 

Example: The integer n 

=89564941429129460494158838187124492462610412156204 

2227318384494381723497514540860474803494041479529  is the 

product of two primes. Use Fermat Factorization to find them. 

 

Solution : We have 

t0 = d  

= 29927402397991286489627871143011285937749436382209 

 

and with the aid of a computer we find that 

q(t0 + 18)
2
 − n = 33408832099552561140000000. 

 

Hence 

s = 33408832099552561140000000, 

t = 29927402397991286489627871143011285937749436382227, 

 

so that the prime factorization of n is pq where 

 

p = 29927402397991286489627837734179186385188296382227, 

q = 29927402397991286489627904551843385490310576382227. 

Note that = 18.6476 . . .. 

 

Remark: Factoring n in this manner only took a matter of minutes using 

Maple. However, after over 8 hours neither Maple nor PARI could 

successfully factor n na¨ıvely. 
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Example To illustrate the application of Fermat's method, let us factor 

the integer n = 119143. Solution : From a table of squares, we find that 

345
2
 < 119143 < 346

2
; thus it suffices to consider values of k

2
 - 119143 

for those k that satisfy the inequality 346 ≤ k < (119143 + 1)/2 = 59572.  

The calculations begin as follows: 

346
2
 - 119143 = 119716- 119143 = 573 

347
2 

- 119143 = 120409- 119143 = 1266 

348
2
 - 119143 = 121104- 119143 = 1961 

349
2
 - 119143 = 121801 - 119143 = 2658 

350
2
 - 119143 = 122500- 119143 = 3357 

351
2
 - 119143 = 123201- 119143 = 4058 

352
2
 - 119143 = 123904- 119143 = 4761 = 69

2 

 

This last line exhibits the factorization 

119143 = 352
2
 - 69

2
 = (352 + 69)(352- 69) = 421 . 283 

 

the two factors themselves being prime. In only seven trials, we have 

obtained the prime factorization of the number 119143. Of course, one 

does not always fare so luckily; it 

may take many steps before a difference turns out to be a square. 

 

Example. Suppose we wish to factor the positive integer n = 2189 and 

happen to notice that 579
2
 = 18

2 
(mod 2189).  

 

Solution : Then we compute 

 

   gcd(579- 18, 2189) = gcd(561 , 2189) = 11 

using the Euclidean Algorithm: 

 

    2189 = 3 . 561 + 506 

    561 = 1. 506 +55 

    506 = 9 . 55 + 11 

    55= 5. 11 
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This leads to the prime divisor 11 of 2189. The other factor, namely 199, 

can be obtained by observing that 

 

 gcd(579 + 18, 2189) = gcd(597, 2189) = 199 

Why weconsider 579. As 579, whose bsquare modulo 2189 also turns 

out to be a perfect square. In looking for squares close to multiples of 

2189, it was observed that 

 

   81 
2
 – 3 · 2189 = – 6 and 155

2
 – 11 · 2189 = – 54 

which translates into 

 

   81
 2
 = – 2 · 3 (mod 2189) and 155

2
 = – 2 · 33 (mod 2189) 

When these congruences are multiplied, they produce 

    (81 · 155)
2
  = (2 · 3

2
) 

2
 (mod 2189) 

 

Because the product 81 · 155 = 12555 = – 579 (mod 2189), we ended up 

with the congruence 579
2 
=18

2
 (mod 2189). 

 

The basis of our approach is to find several xi having the property that 

each xi is, modulo n, the product of small prime powers, and such that 

their product's square is congruent to a perfect square. 

When n has more than two prime factors, our factorization algorithm 

may still be applied; however, there is no guarantee that a particular 

solution ofthe congruence  

    x 
2
 =y

 2
 (mod n), with x ≢. ±y (mod n),  

will result in a nontrivial divisor of n.  

 

Example Let n = 12499 be the integer to be factored. The first square 

just larger than n is 112
2
 = 12544. So we begin by considering the 

sequence of numbers x
2
 – n for x = 112, 113, .... As before, our interest is 

in obtaining a set of values x1, x2 , ••• , xk for which the product (xi - n) · 

· ·(xk- n) is a square, say y
2
 • Then (x1 • • • xk)

2
 = y 

2
 (mod n), which 

might lead to a nontrivial factor of n. 

A short search reveals that 

   112
2
 – 12499 = 45 
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   117
2
 – 12499 = 1190 

   121 
2
 –12499 = 2142 

or, written as congruences, 

   112
2
 = 32 • 5 (mod 12499) 

   117
2
 = 2. 5. 7 · 17 (mod 12499) 

   121
2
 =2. 32 • 7 · 17 (mod 12499) 

 

Multiplying these together results in the congruence 

   (112 · 117 · 121)
2
 = (2 · 32 · 5 ·7 · 17)

2
 (mod 12499) 

that is, 

   15855842 = 107102 (mod 12499) 

But we are unlucky with this square combination. Because 

   1585584 =10710 (mod 12499) 

only a trivial divisor of 12499 will be found. To be specific, 

   gcd(1585584 + 10710, 12499) = 1 

   gcd(1585584- 10710, 12499) = 12499 

 

After further calculation, we notice that 

   113
2
 = 2 · 5 · 33 (mod 12499) 

   127
2
 =2. 3 · 5 · 112 (mod 12499) 

which gives rise to the congruence 

    (113 · 127)2 = (2 · 32 · 5 · 11)2 (mod 12499) 

This reduces modulo 12499 to 

   1852
2
 = 990

2
 (mod 12499) 

and fortunately 1852 ≢ ± 990 (mod 12499). 

 Calculating 

gcd(1852- 990, 12499) = gcd(862, 12499) = 431 

produces the factorization 12499 = 29 ·431. 

9.5 WILSON’S THEOREM 

A positive integer n (>1) is a prime if and only if  (n−1)! ≡ −1(modn).  

At first glance it seems that proving (1) is a really difficult job, but 

proving (2) shouldn't be that hard. Surprisingly, the situation is exactly 

opposite. Proofs of (1) and (2) are included separately below. 
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(1): Assuming n a composite number, we show a contradiction. If n is a 

composite number then it has at least one divisor d less than n, that is  d 

≤  n−1. But since (n−1)! is the product of all positive integers from 1 to  

n−1, the product must contain d and thus be divisible by d. So we have  

(n−1)! ≡  0(mod d). Also (n−1)! ≡ 0 ≢ −1(mod d) since  d∣n, 

contradicting the hypothesis. So n can't be composite, hence prime.  

 

(2): Consider the ℤp This is just the set of integers modulo p, i.e. contains 

all integers from 0 to  p−1. All the operations are done in modulo p. For 

example, in this field 5 + (p – 2) = 3  since  

 

    5 + (p−2) = p+3 ≡3(modp).  

 

Now consider the polynomial   f(x) = x
 p−1

−1, which clearly 

has p−1 roots by the fundamental theorem of algebra. Also  x
p−1

−1 ≡ 

0(modp)  for all 1 ≤  x ≤   p−1 by Fermat's little theorem 

since p is a prime. So in ℤp these must be the  p−1 roots of f. Hence we 

can write 

 

 

 

 

because for odd primes, p−1 is even, implying (−1)
p−1

=1, and for even 

prime 2 we have (−1)
p−1

 = −1 ≡1(mod2). Now simply plugging in x=0 in 

the last equation we get 

 

 

r 

ℤp . (p−1)! ≡ −1(modp).  

 

 

Example:  Prove that 437∣(18!+1). 

Solution : First notice that 437=19×23 and so it suffices to prove that 
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    18!≡−1(mod19),(mod23). 

Now since 19 is a prime, 18!≡−1(mod19) immediately follows by 

Wilson's theorem. Also noting that 23 is a prime, we have \begin 

   24×18! = 18!×(−1)×(−2)×(−3)×(−4) 

        ≡18!×19×20×21×22 

    = 22!  ≡  −1  ≡ −24(mod23), 

and thus 18!≡−1(mod23) as well. 

Therefore,  437∣(18!+1).  

 

Example: Let  a ∈ N such thata 

factorization 

 

 

 

Find  a(mod13). 

Solution : Rewrite the equation as  

 

 

Clearly all the terms in the right side are integers. Also 

except \frac{23!}{13}1323!, all the quotients contain the factor 1313 and 

thus are divisible by 1313. Therefore, we get 
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So we know that  a ≡ 12×10!(mod13). Now we 

use 11!≡1≡66(mod13), which follows byWilson's. 10!≡6(mod13). 

Finally we have 

    a  ≡ 12×10!  ≡  12×6  ≡  7(mod13) 

 

Example: Let p be an odd prime. Let  A={a1,a2,…,ap} and  B={b1,b2

,…,bp} be complete sets of residue classes modulo p. Show that the 

set {a1b1,a2b2,…,apbp} is not a complete set of residue classes. 

 

We will prove by contradiction. Suppose there exist sets  A, B which 

give us a complete set of residue classes. 

Solution : First, if there exists  ai ≡ bj ≡ 0, then  aibi≡ajbj≡0, which would 

not give us a complete set of residue classes. Thus, we may assume that  

a i ≡ bi ≡ 0(modp). WLOG,  i=p. 

By Wilson's theorem, we get that 

 

 

 

 

If  form a complete set of non-zero residue class, then we must 

have 

 

 

Since p is an odd prime, p > 2p > 2 and we have −1≢1(modp), which is a 

contradiction. Hence,  {aibi} is not a complete set of residue classes. 

 

Check Your Progress 2 

3. Explain Femat‘s Factorization Method  
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4. What do you understand by Wilson‘s Theorem  

 

 

 

 

9.6 SUMMARY 

 

Fermat‘s Little Theorem is much easier toprove, but has more far-

reaching consequences for applications to cryptographyand secure 

transmission of data on the Internet. Fermat's theorem has many 

applications and is central to much of what is done  in number theory. In 

the least, it can be a labor-saving device in certain calculations. Fermat 

Factorization method is used for factoring large numbers.-- 

9.7 KEYWORDS 

1. Residue Class: A residue class is a complete set of integers that 

are congruent modulo for some positive integer  

2. Factorization : In math, factorization is when you break a 

number down into smaller numbers that, multiplied together, give 

you that original number. 

3. Congruence:  in mathematics, a term employed in several 

senses, each connoting harmonious relation, agreement, or 

correspondence 

4. Trivial : In mathematics, the adjective trivial is frequently used 

for objects (for example, groups or topological spaces) that have 

a very simple structure. The noun triviality usually refers to a 

simple technical aspect of some proof or definition. 

9.8 QUESTIONS FOR REVIEW 

1. Use Fermat's theorem to verify that 17 divides 11 
104

 + 1. 

2. Find the units digit of 3 
100

 by the use of Fermat's theorem. 
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3. Assuming that a and bare integers not divisible by the prime p, 

establish the following: 

(a) If a
P
= b

P
(mod p), then a = b (mod p). 

4. Use Fermat's method to factor each of the following numbers: 

(a) 2279. 

(b) 10541. 

5. (a) Factor the number 4537 by searching for x such that 

x
2
 - k · 4537  is the product of small prime powers. 

9.9 SUGGESTED READINGS 
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 W.W. Adams and L.J. Goldstein, Introduction to the Theory of 

Numbers, 3rd ed., Wiley Eastern, 1972. 

 A. Baker, A Concise Introduction to the Theory of Numbers, 

Cambridge University Press, Cambridge, 1984. 

 I. Niven and H.S. Zuckerman, An Introduction to the Theory of 

Numbers, 4th Ed., Wiley, New York, 1980. 

 T.M. Apostol, Introduction to Analytic number theory, UTM, Springer, 
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 J. W. S  Cassel, A. Frolich, Algebraic number theory, Cambridge. 

 M Ram Murty, Problems in analytic number theory, springer. 
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9.10 ANSWERS TO CHECK YOUR 

PROGRESS 

1. [HINT: Provide definition and example 9.1] 

2. [HINT: Provide statement, proof and example 9.2.1] 

3. [HINT: Provide algorithm of Fermat‘s Factorization and example 

--9.3.1] 

4. [HINT: Provide explanation—9.4] 
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UNIT 10: ARITHMETIC FUNCTIONS 

I 

STRUCTURE 

10.0 Objective 

10.1 Introduction 

10.2  Arithmetic Functions 

10.3  The Mobius Inversion Formula 

10.4  The Greatest Integer Function 

10.5  Summary 

10.6  Keywords 

10.7  Questions 

10.8  Suggested Readings 

10.9  Answer to Check Your Progress 

10.0 OBJECTIVE 

 

Understand the concept of Arithmetic Functions and its properties 

Learn the concept of Mobius Inversion Formula 

Understand the Greatest Integer Function 

10.1 INTRODUCTION 

In number theory, an arithmetic, arithmetical, or number-theoretic 

function is for most authors any function f(n) whose domain is 

the positive integers and whose range is a subset of the complex 

numbers. Hardy & Wright include in their definition the requirement that 

an arithmetical function "expresses some arithmetical property of n". 

An example of an arithmetic function is the divisor function whose value 

at a positive integer n is equal to the number of divisors of n. 

There is a larger class of number-theoretic functions that do not fit the 

above definition, e.g. the prime-counting functions. 

10.2 ARITHMETIC FUNCTIONS 
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Functions that are defined for all positive integers and whose range is a 

subset of R (or more generally C) are called arithmetic functions. We 

have already considered one very important arithmetic functions – the 

Euler υ-function. Other important arithmetic functions to be considered 

in this section are 

• τ(n), the number of positive divisors of n; 

• σ(n), the sum of the positive divisors of n; 

• σk(n), the sum of the kth powers of the positive divisors of n. 

We will use the following sum and product conventions.  and 

 denote the sum and product, respectively, of f(d) over all 

positive divisors d of n. 

 For example, 

 

Using this notation, we have 

 

,                  

 

Note that the divisor functions τ(n) and σ(n) are special cases of σk(n), 

since τ(n) = σ0(n) and σ(n) = σ1(n). 

 

10.2.1 Definition  
An arithmetic function f(n) is called multiplicative if it is not identically 

zero and satisfies f(mn) = f(m)f(n) for every pair of relatively prime 

positive integers m and n. If f(mn) = f(m)f(n) for each pair m and n, 

relatively prime or not, then f(n) is said to be completely multiplicative. 

 

If f is a multiplicative function, then f(n) = f(n)f(1) for every positive 

integer n, and since there is an n for which f(n) ≠ 0, it follows that f(1) = 

1. Using mathematical induction, it is easy to prove that if m1, m2, . . . , 

mr are pairwise relatively prime positive integers, then 

 

    f(m1m2 · · · mr) = f(m1)f(m2) · · · f(mr). 

In particular, this holds whenever the integers m1, m2, . . . , mr are powers 

of distinct primes. Thus, if n =  is the canonical 



Notes 

42 

factorization of the integer n > 1 as a product of powers of distinct 

primes, then f(n) = f( )f( ) · · · f( ). Therefore, the value of f(n) 

for every n is completely determined by the values f(p
k
) for all prime 

powers. 

We already know that υ(n) is multiplicative and we have used this fact to 

obtain a formula for υ(n). 

 

OR 

Definition. A number-theoretic function  f  is said to be multiplicative if  

 f(mn) = f(m)f(n) 

whenever gcd(m, n) = 1 

10.2.2 Theorem  

 Let f(n) be a multiplicative function, and let F (n) = .  Then F 

(n) is multiplicative. 

 

Proof. Let (m, n) = 1. If d | mn, then d = d1d2, where d1 | m and d2 | n. 

Moreover, d1 = (m, d), d2 = (n, d) and (d1, d2) = 1, and the factorization 

is unique. Consequently, 

 

 

 

 

10.2. 3 Corollary  
 (i) The functions τ(n), σ(n), and more generally, σk(n) are multiplicative. 

(ii) If n = , then 

 

  

 

 

Proof. 

 (i) Since  and the function f(n) = n
k
 is (completely) 

multiplicative, it follows from the previous theorem that σk(n) is 
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multiplicative. τ(n) and σ(n) are special cases. 

 

(ii) The positive divisors of p
k
 are 1, p, p

2
, . . . , p

k
, and hence τ(p

k
) = k + 

1 and σ(p
k
) =   = (p 

k+1
 − 1)/(p − 1). The formulas for τ(n) and 

σ(n) follow from this. 

10.2.4 Theorem  

 For every positive integer n, . 

 

Proof. Write F (n) =  then F (n) is multiplicative by Theorem 

10.2. Since the function G(n) = n is also multiplicative, it suffices to 

verify that F (p
k
) = p

k
 for all prime powers p

k
 in order to prove that F (n) 

= n for all n. 

 

But υ(p
j
) = p

j
 − p

j−1 
for j ≥ 1, and hence 

 

 

 

Let f(n) be an arithmetic function, and define F (n) = .Is 

thefunction f uniquely determined by the function F ? We have 

 

 

 

 

 

 

 

 

 

This can be viewed as a triangular system of linear equations with f(1), 

f(2),. . . , f(n) as unknowns. It is now obvious that f(n) is a linear 

combination of F (1), F (2), . . . , F (n) with integral coefficients. In 

particular, the function f is uniquely determined by the function F . Our 

next objective is to derive a formula for f(n), and for this we will need 

the following function. 
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Example. The number 180 = 22 • 32 · 5 has 

r(180) = (2 + 1)(2 + 1)(1 + 1) = 18 

positive divisors. These are integers of the form 

 

 

 

where a 1 = 0, 1, 2;    a 2 = 0, 1, 2; and   a 3 = 0, 1.  

 

Specifically, we obtain 

 

    1,2,3,4,5,6,9, 10, 12, 15, 18,20,30,36,45,60,90, 

180 

 

The sum of these integers is 

 

 

 

 

CHECK YOUR PROGRESS 1 

 

1. What is Arithmetic Function?  

 

 

 

2. Explain multiplicative.  

 

 

 

 

10.3 THE MOBIUS INVERSION 

FORMULA 
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10.3.1 Definition  

 

 

The function µ is called Mobius‘ µ-function. 

 

10.3.2 Theorem  
 The function µ(n) is multiplicative and 

 

 

 

 

Proof. Multiplicativity is obvious. Define F (n) = ; then F (n) 

is multiplicative by Theorem 10.2. Since µ(p) = −1 and µ(p
j
) = 0 for j ≥ 

2, we have  

 

    F (p
k
) =  =µ(1) + µ(p) = 1 − 1 = 0,  

 

for all primes p and all k ≥ 1. 

Hence, F (n) = 0 for all n > 1, and F (1) = µ(1) = 1. 

 

Let us see what happens if JL(d) is evaluated for all the positive divisors 

d of an integer n and the results are added. In the case where n = 1, the 

answer is easy; 

here, 

 

 

Suppose that n > 1 and put 
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To prepare the ground, we first calculate F(n) for the power of a prime, 

say, n = pk. 

The positive divisors of pk are just the k + 1 integers 1, p, p2, ... , pk, so 

that Because f.L is known to be a multiplicative function, an appeal to 

Theorem 6.4 is legitimate; this result guarantees that F also is 

multiplicative. Thus, if the canonical factorization ofn is n = p~1 p~2 • • 

• p~', then F (n) is the product ofthe values assigned to F for the prime 

powers in this representation: 

 

 

For an illustration of this last theorem, consider n = 10. The positive 

divisors of 10 are 1, 2, 5, 10 and the desired sum is 

 

 

10.3.3 Theorem  
(Mobius‘ inversion formula) Let f be an arbitrary arithmetic function. If 

F (n) =  for every positive integer n, then 

 

 

 

Proof. Using the definition of F we obtain 
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Now we can reverse the order of summation and write the last sum in the 

form 

 

 

 

By Theorem 10.2.2,  = 0 except for k = n, when the value 

is 1. Hence, =  = f(n). 

The following converse is also true. 

 

10.3.4 Theorem  

 If f(n) =  F (n/d) for every positive integer n, then F (n) = 

 

 

Proof. Define G(n) = then f(n) = G(n/d) by Theorem 

10.2.3. Thus, 

 

 

 

holds for all n.  

 

We will use induction to show that this implies that F (n) = G(n) for all 

positive integers n. 

 

First of all, taking n = 1 in (1) we get µ(1)F (1/1) = µ(1)G(1/1), that is F 

(1) = G(1). Suppose that we have F (m) = G(m) for all m < n. Since n/d < 

n for all positive divisors d of n except for d = 1, (1) now simplifies to 

µ(1)F (n/1) = µ(1)G(n/1), and we conclude that F (n) = G(n). This 

completes the induction. 

 

For n ≥1, we define the sum 
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Then M(n) is the difference between the number of square-free positive 

integers k ~ n with an even number of prime factors and those with an 

odd number of prime factors.  

For example, M(9) = 2 – 4  = –2. 

Check Your Progress 2 

3. State Mobius  Function?  

 

 

 

4. Explain Mobius inverse Function.  

 

 

 

 

10.4 THE GREATEST INTEGER 

FUNCTION 

 

Definition. For a real number x, denote by bxc the largest integer less 

than or equal to x. 

A couple of trivial facts about bxc: 

•   is the unique integer satisfying x − 1 <   ≤ x. 

•   = x if and only if x is an integer. 

• Any real number x can be written as x =   + θ, where 0 ≤ θ < 1. 

 

PROPERTIES 

For x a real number and n and integer: 

1. bx + nc = bxc + n. 

 

3.  = if n ≥ 1. 

4.  =  + . More generally, 
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10.4.1 Theorem  
 If n is a positive integer and p a prime, then the 

exponent of the highest power of p that divides 

n! is 

 

where the series is finite, because [n/ p
k
] = 0 for p

k
 > n. 

 

Proof. Among the first n positive integers, those divisible by p are p, 2p, 

... , tp, where t is the largest integer such that tp ≤ n; in other words, t is 

the largest integer less than or equal to say n/p (which is to say t = [n/ p]). 

Thus, there are exactly [n/ p] multiples of p occurring in the product that 

defines n!, namely, 

 

 

The exponent of p in the prime factorization of n! is obtained by adding 

to the number of integers in Eq. (1), the number of integers among 1, 2, 

... , n divisible by p
2
, and then the number divisible by p

3
, and so on. 

Reasoning as in the first paragraph, the integers between 1 and n that are 

divisible by p
2
 are 

 

 

which are [n/p
2
] in number. Of these, [n/ p

3
] are again divisible by p: 

 

After a finite number of repetitions of this process, we are led to 

conclude that the total number of times p divides n! is 
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This result can be cast as the following equation, which usually appears 

under the name of the Legendre formula: 

 

 

Example: We would like to find the number of zeros with which the 

decimal representation of 50! terminates. In determining the number of 

times 10 enters into the product 50!, it is enough to find the exponents of 

2 and 5 in the prime factorization of 50!, and then to select the smaller 

figure. 

By direct calculation we see that 

 

    [50/2] + [50/22] + [50/23] + [50/24] + [50/25] 

    = 25 + 12 + 6 + 3 + 1 

    =47 

 

Theorem 10.4.1 

 tells us that 247 divides 50!, but 248 does not. Similarly, [50/5] + [50/5
2
] 

= 10 + 2 = 12 and so the highest power of 5 dividing 50! is 12. This 

means that 50! ends with 12 zeros 

 

Theorem 10.4.2 

. If n and r are positive integers with 1 ≤ r < n, then the binomial 

coefficient 

 

 

 

is also an integer. 

 

Proof. The argument rests on the observation that if a and b are arbitrary 

real numbers, then [a+ b] ~[a]+ [b]. In particular, for each primefactor p 

of r!(n- r)!, 
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Adding these inequalities, we obtain 

 

The left-hand side of Eq. (1) gives the exponent of the highest power of 

the prime p that divides n!, whereas the right-hand side equals the 

highest power of this prime contained in r!(n- r)!. Hence, p appears in 

the numerator of n! /r!(n- r)! at least as many times as it occurs in the 

denominator. Because this holds true for every prime divisor of the 

denominator, r!(n- r)! mustdividen!, making n!/r!(n- r)! an integer. 

 

10.4.3 Corollary  
 For a positive integer r, the product of any r consecutive positive 

integers is divisible by r!. 

 

Proof. The product of r consecutive positive integers, the largest of 

which is n, is 

    n(n - l)(n - 2) · · ·(n - r + 1) 

Now we have 

Because n!/r !(n - r)! is an integer by the theorem, it follows that r! must 

divide the product n(n - 1) · ··(n - r + 1), as asserted. 

 

10.4.4 Theorem  
 Let f and F be number-theoretic functions such that 

    F(n) =  

Then, for any positive integer N, 

 

 

 

Proof. We begin by noting that 
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The strategy is to collect terms with equal values of f(d) in this double 

sum. For a fixed positive integer k ~ N, the term f(k) appears in Ldln f(d) 

if and only if k is a divisor of n. (Because each integer has itself as a 

divisor, the right-hand side of Eq. (1) includes f(k), at least once.) Now, 

to calculate the number of sums Ld1 n f(d) in which f(k) occurs as a term, 

it is sufficient to find the number of integers among 1, 2, ... , N, which 

are divisible by k. There are exactly [N / k] ofthem: 

k, 2k, 3k, ... ,  

Thus, for each k such that 1 ~ k ~ N, f(k) is a term of the sum  

for [N / k] different positive integers less than or equal to N. Knowing 

this, we may rewrite the double sum in Eq. (1) as and our task is 

complete. 

 

 

 

Corollary 1. If N is a positive integer, then 

 

 

 

Proof. Noting that r(n) = Ld|n 1, we may writer for F and take 

ftobetheconstant function f(n) = 1 for all n. 

In the same way, the relation a (n) =    yields Corollary 2. 

 

Corollary 2. If N is a positive integer, 

then 

 

 

 

 

Example Consider the case N = 6. The definition of r tells us that 
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From Corollary 1, 

 

 

 

 

 

 

as it should. In the present case, we also have 

 

 

 

and a simple calculation leads to 

 

 

 

 

 

 

Check Your Progress 3 

5.  Define the Greatest Integer Function  

 

 

 

 

          2. State the properties of the Greatest Integer Function  

 

 

 

10.5 SUMMARY 
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Arithmetic functions are real- or complex-valued functions defined on 

the set \mathbb{Z^+}Z+ of positive integers. They describe arithmetic 

properties of numbers and are widely used in the field of number theory. 

10.6 KEYWORDS 

1. Range : The Range is the difference between the lowest and highest 

values. 

2. Induction:  is a mathematical technique which is used to prove a 

statement, a formula or a theorem is true for every natural number. 

3. Positive Divisor: A positive proper divisor is a positive divisor of a 

number , excluding itself. For example, 1, 2, and 3 

are positive proper divisors of 6, but 6 itself is not. 

4. Exponent: An exponent refers to the number of times a number is 

multiplied by itself. 

10.7 QUESTIONS FOR REVIEW 

1. Prove the following. 

(a) r(n) is an odd integer if and only if n is a perfect square. 

(b) a(n) is an odd integer if and only if n is a perfect square or twice a 

perfect square. 

 

2. If n is a square-free integer, prove that r(n) = 2
r
, where r is the number 

of prime divisors 

of n. 

3. For each positive integer n, show that (n)  (n + 1)  (n + 2)  (n + 3) 

= 0 

4. Given integers a and b > 0, show that there exists a unique integer r 

with 0 ≤ r < b 

satisfying a= [ajb]b + r. 

5. Find the highest power of 5 dividing 1000! and the highest power of 7 

dividing 2000!. 

10.8  SUGGESTED READINGS 
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 W.W. Adams and L.J. Goldstein, Introduction to the Theory of 

Numbers, 3rd ed., Wiley Eastern, 1972. 

 A. Baker, A Concise Introduction to the Theory of Numbers, 

Cambridge University Press, Cambridge, 1984. 

 I. Niven and H.S. Zuckerman, An Introduction to the Theory of 
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Springer, (1976). 

 J. W. S  Cassel, A. Frolich, Algebraic number theory, Cambridge. 
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theory, springer. 

10.9 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1.[HINT: Provide both alternate definition with example 10.1.1 ] 

2.[HINT: Provide statement of theorem related to arithmetic function 

being multiplicative with proof 10.1.2 ] 

3.[HINT:Provide the definition, example and statement of theorem 

10.2.1] 

4.[HINT:Provide the definition, example and statement of theorem 

10.2.3] 

5.[HINT:Provide the definition and example 10.3 Definition] 

6.[HINT: Provide properties and explain one example that applies the 

property 10.3 Properties] 
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UNIT 11: ARITHMETIC FUNCTION II 

STRUCTURE 
 

11.0 Objective 

11.1 Introduction 

11.2  The Mangoldt function 

11.3  The Dirichlet product of arithmetic functions 

11.4  Formal Power Series 

11.5  The Bell Series 

11.6  Summary 

11.7  Keywords 

11.8  Questions 

11.9  Suggested Readings 

11.10  Answers to Check your Progress 

11.0 OBJECTIVE 

In this unit you will explore the maggoldt function and the Dirichlet 

product of arithmetic functions and understand the concept of Formal 

Power Series and the Bell Series 

11.1 INTRODUCTION 

 

Arithmetic functions are real- or complex-valued functions defined on 

the set  Z+ of positive integers. They describe arithmetic properties of 

numbers and are widely used in the field of number theory. Arithmetic 

functions are different from typical functions in that they cannot usually 

be described by simple formulas, so they are often evaluated in terms of 

their average or asymptotic behavior. 

11.2 THE MANGOLDT FUNCTION 

 

The von Mangoldt function, denoted by an upper-case lambda Λ(n), is an 

arithmetic function that plays a critical role in the distribution of primes. 
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11.2.1. Theorem  
We have 

 

 

 

Proof.  For n = 1, the 

identity holds since Λ(1) = 

0 = log 1. For n ≥ 2 we 

have, by the definition of Λ, 

 

(For the last step note that, for each prime power pα||n, each of the terms 

p
1
, p

2
, . . . , p

α 
contributes a term log p to the sum, so the total 

contribution arising from powers of p is α(log p) = log p
α
. Adding up 

those contributions over all prime powers p
α
||n, gives 

 . 

The main motivation for introducing the von Mangoldt function is that 

the partial sums Pn≤x Λ(n) represent a weighted count of the prime 

powers p
m

 ≤ x, with the weights being log p, the ―correct‖ weights to 

offset the density of primes. It is not hard to show that higher prime 

powers (i.e.,those with m ≥ 2) contribute little to the above sum, so the 

sum is essentially a weighted sum over prime numbers. In fact, studying 

the asymptotic behavior of the above sum is essentially equivalent to 

studying the behavior of the prime counting function π(x); for example, 

the PNT is equivalent to the assertion that limx→∞(1/x)  = 1. 

In fact, most proofs of the PNT proceed by first showing the latter 

relation, and then deducing from this the original form of the PNT. The 

reason for doing this is that, because of the identity in the above theorem 

(and some similar relations), working with Λ(n) is technically easier than 

working directly with the characteristic function of primes. 
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11.3 THE DIRICHLET PRODUCT OF 

ARITHMETIC FUNCTIONS 

The two obvious operations on the set of arithmetic functions are 

pointwise addition and multiplication. The constant functions f = 0 and f 

= 1 are neutral elements with respect to these operations, and the additive 

and multiplicative inverses of a function f are given by −f and 1/f, 

respectively. 

While these operations are sometimes useful, by far the most important 

operation among arithmetic functions is the so-called Dirichlet product, 

an operation that, at first glance, appears mysterious and unmotivated, 

but which has proved to be an extremely useful tool in the theory of 

arithmetic functions. 

Definition. Given two arithmetic functions f and g, the Dirichlet 

product (or Dirichlet convolution) of f and g, denoted by f ∗ g, is the 

arithmetic function defined by 

 

 

 

 

 

In particular, we have (f ∗ g)(1) = f(1)g(1), (f ∗ g)(p) = f(1)g(p) + f(p)g(1) 

for any prime p, and (f ∗ g)(p
m

) =   for any prime 

power p
m

. 

It is sometimes useful to write the Dirichlet product in the symmetric 

form 

 

 

 

where the summation runs over all pairs (a, b) of positive integers whose 

product equals n. The equivalence of the two definitions follows 

immediately from the fact that the pairs (d, n/d), where d runs over all 

divisors of n, are exactly the pairs (a, b) of the above form. 

One motivation for introducing this product is the fact that the definitions 

of many common arithmetic functions have the form of a Dirichlet 
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product, and that many identities among arithmetic functions can be 

written concisely as identities involving Dirichlet products.  

11.3.1 Theorem  
 (Properties of the Dirichlet product). 

 

(i) The function e acts as a unit element for ∗, i.e., f ∗ e = e ∗ f = f for all 

arithmetic functions f . 

 

(ii) The Dirichlet product is commutative, i.e., f ∗ g = g ∗ f for all f and g. 

 

(iii) The Dirichlet product is associative, i.e., (f ∗ g) ∗ h = f ∗ (g ∗ h) for 

all f, g, h. 

 

(iv) If f(1) ≠ 0, then f has a unique Dirichlet inverse, i.e., there is a 

unique function g such that f ∗ g = e. 

Proof. (i) follows immediately from the definition of the Dirichlet 

product. For the proof of (ii) (commutativity) and (iii) (associativity) it is 

useful to work with the symmetric version of the Dirichlet product, i.e., 

(f ∗ g)(n) =    The commutativity of ∗ is immediate from 

this representation. To obtain the associativity, we apply this 

representation twice to get 

 

where  

 

 

 

the last sum runs over all triples (a, b, c) of positive integers whose 

product is equal to n. Replacing (f, g, h) by (g, h, f) in this formula yields 

the same final (triple) sum, and we conclude that (f ∗ g) ∗ h = (g ∗ h) ∗ f 

= f ∗ (g ∗ h), proving that ∗ is associative. 

 

It remains to prove (iv). Let f  be an arithmetic function with f(1) ≠ 0. By 

definition, a function g is a Dirichlet inverse of f if (f ∗ g)(1) = e(1) = 1 

and (f ∗ g)(n) = e(n) = 0 for all n ≥ 2. Writing out the Dirichlet product (f 

∗ g)(n), we see that this is equivalent to the infinite system of equations 
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We need to show that the system (An)∞ n=1 has a unique solution g. We 

do this by inductively constructing the values g(n) and showing that 

these values are uniquely determined. For n = 1, equation (A1) gives g(1) 

= 1/f(1), which is well defined since f(1) ≠ 0. Hence, g(1) is uniquely 

defined and (A1) holds. Let now n ≥ 2, and suppose we have shown that 

there exist unique values g(1), . . . , g(n −1) so that equations (A1)–(An−1) 

hold. Since f (1) ≠ 0, equation (An) is 

equivalent to 

 

 

 

Since the right-hand side involves only values g(d) with d < n, this 

determines g(n) uniquely, and defining g(n) by above equation we see 

that (An) (in addition to (A1)–(An−1)) holds. This completes the induction 

argument. 

11.3.2 Theorem  
 (Dirichlet product and multiplicative functions). 

(i) If f and g are multiplicative, then so is f ∗ g. 

(ii) If f is multiplicative, then so is the Dirichlet inverse f −1. 

(iii) If f ∗ g = h and if f and h are multiplicative, then so is g. 

(iv) (Distributivity with pointwise multiplication) If h is completely 

multiplicative, then h(f ∗ g) = (hf) ∗ (hg) for any functions f and g. 

 

Remarks. (i) The product of two completely multiplicative functions is 

multiplicative (by the theorem), but not necessarily completely 

multiplicative. 

 

For example, the divisor function d(n) can be expressed as a product 1 ∗ 

1 in which each factor 1 is completely multiplicative, but the divisor 

function itself is only multiplicative in the restricted sense (i.e., with the 
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coprimality condition). The same applies to the Dirichlet inverse: if f is 

completely multiplicative, then f −1 is multiplicative, but in general not 

completely multiplicative. 

 

(ii) By Theorem 1.8, any function f with f(1) ≠ 0 has a Dirichlet inverse. 

Since a multiplicative function satisfies f(1) = 1, any multiplicative 

function has a Dirichlet inverse. 

 

(iii) Note that the distributivity asserted in property (iv) only holds when 

the function h is completely multiplicative. (In fact, one can show that 

this property characterizes completely multiplicative functions: If h is 

any non-zero function for which the identity in (iv) holds for all 

functions f and g, then h is necessarily completely multiplicative.) 

 

Proof. (i) Let f and g be multiplicative and let h = f ∗ g. Given n1 and n2 

with (n1, n2) = 1, we need to show that h(n1n2) = h(n1)h(n2). To this end 

we use the fact (see the proof of Theorem 1.7) that each divisor d|n1n2 

can be factored uniquely as d = d1d2 with d1|n1 and d2|n2, and that, 

conversely, given any pair (d1, d2) with d1|n1 and d2|n2, the product d = 

d1d2 satisfies 

d| n1n2. Hence 

 

 

Since (n1, n2) = 1, any divisors d1|n1 and d2|n2 satisfy (d1, d2) = 1 and 

(n1/d1, n2/d2) = 1. Hence, in the above double sum we can apply the 

multiplicativity of f and g to obtain 

 

 

 

 

 

which is what we had to prove. 
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(ii) Let f be a multiplicative function and let g be the Dirichlet inverse of 

f. We prove the multiplicativity property  

(A)  g(n1n2) = g(n1)g(n2) if (n1, n2) = 1 

by induction on the product n = n1n2. If n1n2 = 1, then n1 = n2 = 1, and (A) 

holds trivially. Let n ≥ 2 be given, and suppose (A) holds whenever 

n1n2< n. Let n1 and n2 be given with n1n2 = n and (n1, n2) = 1. Applying 

the identity (An) above, we obtain, on using the multiplicativity of f and 

that of g for arguments < n, 

 

 

  = (f ∗ g)( n1)(f ∗ g)(n2) + (g(n1n2) − g(n1)g(n2)) 

  = e(n1)e(n2) + (g(n1n2) − g(n1)g(n2)), 

  = g(n1n2) − g(n1)g(n2), 

 

since, by our assumption n = n1n2 ≥ 2, at least one of n1 and n2 must be ≥ 

2, and so e(n1)e(n2) = 0. Hence we have g(n1n2) = g(n1)g(n2). Thus, (A) 

holds for pairs (n1, n2) of relatively prime integers with n1n2 = n, and the 

induction argument is complete. 

 

(iii) The identity f ∗g = h implies g = f −1 ∗h, where f −1 is the Dirichlet 

inverse of f. Since f and h are multiplicative functions, so is f −1 (by (ii)) 

and f −1 ∗ h (by (i)). Hence g is multiplicative as well. 

 

(iv) If h is completely multiplicative, then for any divisor d|n we have 

h(n) = h(d)h(n/d). Hence, for all n 
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= ((hf) ∗ (hg))(n), proving (iv). 

 

Check YOUR PROGRESS 1 

1. Define Dirichlet product  

 

 

 

2. State any two properties of Dirichlet product and prove them  

 

 

Application I: Proving identities for multiplicative arithmetic 

functions.  

The above results can be used to provide simple proofs of identities for 

arithmetic functions, using the multiplicatively of the functions involved. 

To prove an identity of the form f ∗ g = h in the case when f, g, and h are 

known to be multiplicative functions, one simply shows, by direct 

calculation, that (∗) (f ∗ g)(p
m

) = h(p
m

) holds for every prime power p
m

. 

Since, by the above theorem, the multiplicativity of f and g implies that 

of f ∗ g, and since multiplicative functions are uniquely determined by 

their values at prime powers, (∗) implies that the identity  

 (f ∗ g)(n) = h(n) 

holds for all n ∈ N. 

 

Examples 

(1) Alternate proof of the identity  = e(n). The identityvcan 

be written as µ ∗ 1 = e, and since all three functions involved are 

multiplicative, it suffices to verify that the identity holds on prime 

powers. Since e(pm) = 0 and (µ ∗ 1)(pm) =   = 1 − 1 + 0 −0 · 

· · = 0, this is indeed the case. 

 

(2) Proof of  =  . This identity is of the form f 

∗ 1 = g with f = µ
2
/  and g = id / .The functions f and g are both 

quotients of multiplicative functions and therefore are multiplicative. 
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Hence all three functions in the identity f ∗ 1 = g are multiplicative, and 

it suffices to verify the identity at prime powers.We have  

     g(p
m

) = p
m

 /υ(p
m

) = p
m

 /( p
m

 − p
m−1

) = (1  − 1/p)
−1

, 

and 

 (f ∗1)( p
m

) =   = 1+1/(p −1) = (1 −1/p)
−1

, 

and 

 

so g(p
m

) = (f ∗ 1)(p
m

) for every prime power p
m

. Thus the identity holds 

at prime powers, and therefore it holds in general. 

 

(3) The Dirichlet inverse of λ. Since µ ∗ 1 = e, the function 1 is the 

Dirichlet inverse of the Moebius function. To find the Dirichlet inverse 

of λ, i.e., the unique function f such that λ ∗ f = e, note first that since λ 

and e are both multiplicative, f must be multiplicative as well, and it 

therefore suffices to evaluate f at prime powers. Now, for any prime 

power p
m

, 

 

 

so f(pm) = −  (−1)
k
. This implies f(p) = 1, and by induction 

f(p
m

) = 0 for m ≥ 2. Hence f is the characteristic function of the 

squarefree numbers, i.e., λ
−1

 = 
µ2

. 

 

Application II: Evaluating Dirichlet products of multiplicative 

functions. 

 

Since the Dirichlet product of multiplicative functions is multiplicative, 

and since a multiplicative function is determined by its values on prime 

powers, to evaluate a product f ∗ g with both f and g multiplicative, it 

suffices to compute the values of f ∗ g at prime powers. By comparing 

these values to those of familiar arithmetic functions, one can often 

identify f ∗ g in terms of familiar arithmetic functions. 
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Examples 

(1) The function λ∗1. We have (λ∗1)(p
m

) =  = 

, which equals 1 if m is even, and 0 otherwise. However, 

the latter values are exactly the values at prime powers of the 

characteristic function of the squares, which is easily seen to be 

multiplicative. Hence λ ∗1 is 

equal to the characteristic function of the squares. 

 

(2) The function fk(n) =  Here k is a fixed positive 

integer, and the summation runs over those divisors of n that are 

relatively prime to k. We have fk = gk ∗ 1, where gk(n) = µ(n) if (n, k) = 1 

and gk(n) = 0 otherwise. It is easily seen that gk is multiplicative, so fk is 

also multiplicative. On prime powers p
m

, gk(p
m

) = −1 if m = 1 and p ∤ k 

and gk(p
m

) = 0 otherwise, so fk (p
m

) =  = 1 − 1 = 0 if p ∤v k, 

and fk(p
m

) = 1 otherwise. By the multiplicativity of fk it follows that fk is 

the characteristic function of the set Ak = {n ∈ N : p|n ⇒ p|k}. 

 

Application III: Proving the multiplicativity of functions, using 

known identities. This is, in a sense, the previous application in reverse. 

Suppose we kow that f ∗ g = h and that f and h are multiplicative. Then, 

by Theorem 1.10, g must be multiplicative as well. 

 

Examples 

(1) Multiplicativity of υ. Since υ ∗ 1 = id (see Theorem 1.5) and the 

functions 1 and id are (obviously) multiplicative, the function υ must be 

multiplicative as well. This is the promised proof of the multiplicativity 

of the Euler function (part (ii) of Theorem 1.5). 

 

(2) Multiplicativity of d(n) and σ(n). Since d = 1∗1, and the function 1 

is multiplicative, the function d is multiplicative as well. Similarly, since 

σ = id ∗1, and 1 and id are multiplicative, σ is multiplicative. 

 

Check your progress 2 
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3. What do you understand by Dirichlet inverse of λ  

 

 

 

4. What is λ*1?  

 

 

 

 

11.4 FORMAL POWER SERIES 

 

In calculus an infinite series of the form 

 

Is called power series in x.  Both x and coefficient a(n) are called real or 

complex numbers. To each power series there corresponds a radius of 

convergence r ≥ 0 such that series converges absolutely if |x| < r and 

diverges if |x| > r. ( The radius can be +  ) 

 

Consider the following sequence  

 

 

a(0) – constant coefficient of the series 

 

If A(x) and B(x) are two formal series then  

 

 

 

We define 
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where  

 

 

 

{c(n)} is called as Caunchy product of sequence {a(n)} and {b(n)} 

 

In modern algebra, formal power series form a ring. The ring has zero 

element for addition which we denote by 0 

 

 

 

An identity element for multiplication  which we denote by 1 

 

 

 

 

A formal power series is called formal polynomial if all its coefficients 

are 0 from some point on.  

 

For each formal power series                                                                                                       

                

 -With constant coeffiecient a(0)  ≠ 1  

 

 

- uniquely determined formal series such that 

A(x)B(x) = 1.Its coeffiecient can be determined by 

solving  infinite system of equation 

 

 

 

 

in succession for b(0), b(1),b(2), …The series B(x) is called the inverse 

of A(x) and is denoted by A(x) 
–1

  or by 1/A(x) 

 

 



Notes 

69 

11.5 Bell series 

 

If f is a multiplicative function of r variables, then its (formal) Bell series 

to the base p 

(p prime) is defined by 

 

 

 

 

where the constant term is 1. The main property is the following: for 

every f, g ∈ Mr 

The connection of Bell series to Dirichlet series and Euler products is 

given by 

 

 

 

valid for every f ∈ Mr. For example, the Bell series of the gcd function 

f(n1, . . . , nr) = 

gcd(n1, . . . , nr) is 

 

The Bell series of other multiplicative functions, in particular of c(m, n), 

s(m, n), σ(n1, . . . , nr) and cn(k) can be given from their Dirichlet series 

representations and using the relation . Note that in the one variable case 

the Bell series to a fixed prime of the unitary convolution of two 

multiplicative functions is the sum of the Bell series of the functions, that 

is  

    (f × g)(p) (x1) = f (p) (x1) + g (p) (x1), 

 

This is not valid in the case of r variables with r > 1. 

Check Your Progress 3 
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5. Explain the formal Power series.  

 

 

 

6. What is Bell Series ?  

 

 

 

 

11.6 SUMMARY  

An arithmetic function is any real- or complex-valued function defined 

on the set N of positive integers. Arithmetic functions are different from 

typical functions in that they cannot usually be described by simple 

formulas, so they are often evaluated in terms of 

their average or asymptotic behavior. 

 

11.7 KEYWORDS 

1. Neutral Element: In mathematics, an identity element, or neutral 

element, is a special type of element of a set with respect to a binary 

operation on that set, which leaves any element of the set unchanged 

when combined with it. 

2. Weighted Average. A method of computing a kind of 

arithmetic mean of a set of numbers in which some elements of the 

set carry more importance (weight) than others 

3. Unique Function: A special relationship where each input has a 

single output. 

4. Constant Function : In mathematics, a constant function is 

a function whose (output) value is the same for every input value. 

11.8 QUESTIONS FOR REVIEW 
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1. Let f be a multiplicative function. We know that the Dirichlet 

inverse f 
−1

 is then also multiplicative. Show that f 
−1

 is 

completely multiplicative if and only if f(p
m

) = 0 for all prime 

powers pm with m ≥ 2 (i.e., if and only if f is supported by the 

squarefree numbers). 

2. Given an arithmetic function f, a ―Dirichlet square root‖ of f is an 

arithmetic function g such that g ∗ g = f. Prove by elementary 

techniques that the constant function 1 has two Dirichlet square 

roots, of the form ±g, where g is a multiplicative function, and 

find the values of g at prime powers. 

3. Let f be a multiplicative function satisfying limpm→∞ f(pm) = 0. 

Show that limn→∞ f(n) = 0. 

4. 1.12 An arithmetic function f is called periodic if there exists a 

positiveinteger k such that f(n + k) = f(n) for every n ∈ N; the 

integer k is called a period for f. Show that if f is completely 

multiplicative and periodic with period k, then the values of f are 

either 0 or roots of unity. (An root of unity is a complex number z 

such that zn = 1 for some n ∈ N.) 
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11.10 ANSWERS TO CHECK YOUR 

PROGRESS 

1.[HINT: Provide the definition, representation and example 11.2 

Definition] 

2.[HINT: Provide the statement and proof 11.2.1] 

3.[Provide explanation with representation-- Application I example 3] 

4.[Provide the explanation of the function --Application II example 1] 

5.[HINT: Provide the definition and explanation 11.3] 

6.[HINT: Provide the definition and explanation 11.4] 

 

 

 

 

 

 

 

 

 

 



 

73 

UNIT 12: EULER PHI FUNCTION 

STRUCTURE 
 

12.0 Objective 

12.1 Introduction 

12.2 Euler Phi Function 

12.3 The Sum of Divisor Function 

12.4 Properties of Euler Phi Function 

12.5 Summary 

12.6 Keywords 

12.7 Questions for review 

12.8 Suggested Readings 

12.9 Answers to Check Your Progress 

12.0 OBJECTIVE 

In this unit we will study properties of  euler phi function and The Sum 

of Divisor Function. 

12.1 INTRODUCTION 

This UNIT is the part ofthe theory arising out ofthe result known as 

Euler's Generalization ofFermat's Theorem. In a nutshell, Euler extended 

Fermat's theorem, which concerns congruences with prime moduli, to 

arbitrary moduli. 

Leonhard Euler's totient function, ϕ(n),  is an important object in number 

theory, counting the number of positive integers less than or equal 

to nn which are relatively prime ton.  

12.2 EULER PHI FUNCTION 

Euler's totient function (also called the Phi function) counts the number 

of positive integers less than n that are coprime ton. That is ϕ(n) is the 

number of m∈N such that  gcd(m,n)=1. 
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The totient function appears in many applications of elementary number 

theory, including Euler's theorem, primitive roots of unity, cyclotomic 

polynomials, and constructible numbers in geometry. 

12.2.1. Definition  
 For n ≥ 1, let denote the number of positive integers not exceeding 

n that are relatively prime to n. 

As an illustration of the definition, we find that  (30) = 8; for, among 

the positive integers that do not exceed 30, there are eight that are 

relatively prime to 30; specifically, 

 

    1, 7, 11, 13, 17,19,23,29 

The function > is usually called the Euler phi-function (sometimes, the 

indicator or totient) after its originator; the functional notation  (n), 

however, is credited to Gauss. If n is a prime number, then every integer 

less than n is relatively prime to it; whence,  (n) = n – 1. On the other 

hand, if n > 1 is composite, then n has adivisor d such that 1 < d < n. It 

follows that there are at least two integers among 1, 2, 3, ... , n that are 

not relatively prime to n, namely, d and n itself. As a result,  

(n) . This proves that for n > 1, 

     (n) =  if and only if n is prime 

12.2.2 Theorem  
 If p is prime, then  (p) = p − 1. Conversely, if p is an integer such that 

υ(p) = p − 1, then p is prime. 

 

Proof. The first part is obvious since every positive integer less than p is 

relatively prime to p. Conversely, suppose that p is not prime. Then p = 1 

or p is a composite number. If p = 1, then  (p) ≠ p − 1. Now if p is 

composite, then p has a positive divisor. Thus υ(p) 6= p − 1. We have a 

contradiction and thus p is prime. 

 

Lemma. Given integers a, b, c, gcd(a, bc)= 1 if and only if gcd(a, b)= 1 

and gcd(a, c) = 1. 
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Proof. First suppose that gcd(a, bc) = 1, and put d = gcd(a, b). Then d |a 

and d |b, whence d |a and d |bc. This implies that gcd(a, bc) ≥ d, which 

forces d = 1. Similar reasoning gives rise to the statement gcd(a, c) = 1. 

For the other direction, take gcd(a, b)= 1 = gcd(a, c) and assume that 

gcd(a, bc)= d1 > 1. Then d1 must have a prime divisor p. Because d1 | bc, 

it follows that p | bc; in consequence, p | b or p | c. If p |b, then (by virtue 

of the fact that p | a)  we have gcd(a, b) ≥ p, a contradiction. In the same 

way, the condition p |c leads to the equally false conclusion that gcd(a, c) 

≥ p. Thus, d1 = 1 and the lemma is proven. 

12.2.3 Theorem  
Let p be a prime and m a positive integer, then υ(p

m
) = p

m
−p

m−1
. 

 

Proof. Note that all integers that are relatively prime to p
m

 and that are 

less than p
m

 are those that are not multiple of p. Those integers are 

p,2p,3p, ..., p
m−1 

p. 

 

There are p
m−1 

of those integers that are not relatively prime to p
m

 and 

that are less than p
m.

 Thus 

      (pm) = p
m

 − p
m−1

. 

 

Example.   (7
3
) = 7

3
 −7

2
 = 343 −49 = 294.  

 

Also  (2
10

) = 2
10

 −2
9
 = 512. 

 

12.2.4 Theorem  
 Let m and n be two relatively prime positive integers. Then  

      (mn) =  (m)  (n). 

 

Proof. Denote υ(m) by s and let k1, k2, ..., ks be a reduced residue system 

modulo m. Similarly, denote  (n) by t and let k'1 , k'2, ..., k't be a reduced 

residue system modulo n. Notice that if x belongs to a reduced residue 

system modulo mn, then 
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  (x, m) = (x, n) = 1. 

 

Thus 

   x ≡ ki(mod m)   and   x ≡ k'j (mod n) 

 

for some i, j. Conversely, if 

   x ≡ ki (mod m)  and   x ≡ k'j (mod n) 

 

some i, j then (x, mn) = 1 and thus x belongs to a reduced residue system 

modulo mn. Thus a reduced residue system modulo mn can be obtained 

by by determining all x that are congruent to ki and k'j modulo m and n 

respectively. By the Chinese remainder theorem, the system of equations 

 

   x ≡ ki (mod m)  and   x ≡ k'j (mod n) 

 

has a unique solution. Thus different i and j will yield different answers. 

Thus  

       (mn) = st. 

12.2..5 Theorem  

 Let n = be the prime factorization of n. Then 

 

 

 

Proof. By Theorem 

12.1.3, we can see that for all 1 ≤ i ≤ k 

 

 

 

Thus by Theorem 12.1.4, 
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Example Note that 

 

υ(200) = υ(2
3
5

2
) = 200 = 80. 

 

12.2.6.Theorem  
 Let n be a positive integer greater than 2. Then υ(n) is even. 

 

Proof. Let n = Since  is multiplicative, then 

 

Thus by Theorem 39, we have 

     ( ) =  (pj − 1). 

 

We see then  ( )  is even if pj is an odd prime. Notice also that if pj = 

2, then it follows that  ( )  is even. Hence  (n) is even. 

 

12.2.7. Theorem  
 Let n be a positive integer. Then 

 

 

 

Proof. Split the integers from 1 to n into classes. Put an integer m in the 

class Cd if the greatest common divisor of m and n is d. Thus the number 

of integers in the Cd  class is the number of positive integers not 
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exceeding n/d that are relatively prime to n/d. Thus we have  (n/d) 

integers in Cd. Thus we see that 

 

 

 

As d runs over all divisors of n, so does n/d. Hence 

 

 

 

 

12.3 THE SUM-OF-DIVISORS FUNCTION 

The sum of divisors function, denoted by σ(n), is the sum of all positive 

divisors of n. 

 

Example. σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28. 

 

Note that we can express σ(n) as σ(n) = Pd|n d. 

 

12.3.1 .Theorem  
 

The sum of divisors function σ(n) is multiplicative. 

Proof. Let f(n) = n and notice that f(n) is multiplicative. As a result, σ(n) 

is multiplicative. 

Once we found out that σ(n) is multiplicative, it remains to evaluate σ(n) 

at powers of primes and hence we can derive a formula for its values at 

any positive integer. 

 

12.3.2.Theorem  

t  Let p be a prime and let n = 

be a positive integer. Then 

 

and as a result, 
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Proof. Notice that the divisors of pa are 1, p, 
p2

, ..., p
a
. Thus 

 

  σ(p
a
) = 1 + p + p

2
+ ... + p

a 
=   

 

where the above sum is the sum of the terms of a geometric progression. 

Now since σ(n) is multiplicative, we have 

 

 . 

 

 

 

 

 

Example:  σ(200) = σ(2
3
5

2
) =  = 15.31 = 465. 

 

The Number-of-Divisors Function 

The number of divisors function, denoted by τ(n), is the sum of all 

positive divisors of n. 

 

Example. τ(8) = 4. 

 

We can also express τ(n) as τ(n) = Pd|n 1. 

We can also prove that τ(n) is a multiplicative function. 

 

12.3.3.Theorem  
The number of divisors function τ(n) is multiplicative. 

 

Proof.  As we know that  with f(n) = 1, τ(n) is multiplicative. 

 

We also find a formula that evaluates τ(n) for any integer n. 
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12.3.4.Theorem  

 Let p be a prime and let n = t be a positive integer. Then 

     τ(p
a
) = a + 1,  

and as a result, 

 

 

Proof. The divisors of pa as mentioned before are 1, p, p
2
, ..., p

a
. Thus 

     τ(p
a
) = a + 1 

Now since τ(n) is multiplicative, we have 

   τ(n) = τ( )τ( )...τ( )) 

           = (a1 + 1)(a2 + 1)...(at + 1) 

 

 

Example: τ(200) = τ (2
3
5

2
) = (3 + 1)(2 + 1) = 12. 

 

Check Your Progress 

1.Explain the sum of divisor and number of divisor concept  

 

 

 

 

2. What is Euler‘s Phi Function?  

 

 

 

 

12.4 SOME PROPERTIES OF THE PHI-

FUNCTION 
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12.4.1 Theorem  
 Gauss. For each positive integer n ≥ 1 

 

 

 

the sum being extended over all positive divisors of n. 

Proof. The integers between 1 and n can be separated into classes as 

follows: If d is a positive divisor of n, we put the integer  m in the class 

sd provided that gcd(m, n) =d. 

 

Stated in symbols, 

 

Sd = {m | gcd(m, n) = d; 1 ≤ m ≤ n} 

 

Now gcd(m , n) = d if and only if gcd(m | d , n | d) = 1. Thus, the number 

of integers in the class Sd is equal to the number of positive integers not 

exceeding n|d that are relatively prime to n|d; in other words, equal to 

(n |d). Because each of then integers in the set {1, 2, ... , n} lies in 

exactly one class Sd, we obtain the formula 

 

 

 

But as d runs through all positive divisors of n, so does n|d; hence, 

 

which proves the theorem. 

 

Example. A simple numerical example of what we have just said is 

provided by n = 10. Here, the classes Sd are 

    S1={1,3,7,9} 

     S2 = {2, 4, 6, 8} 

    S5 = {5} 

    S10 = {10} 

These contain  (10) = 4,  (5) = 4,  (2) = 1, and  (1) = 1 integers, 
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respectively. 

Therefore, 

 

 

 

12.4.2. Theorem  
 For n > 1, the sum of the positive integers less than n and relatively 

prime to n is   

 

Proof. Let a 1, a2 , ... , ) be the positive integers less than nand 

relatively prime to n. Now because gcd(a, n) = 1 if and only if gcd(n – a, 

n) = 1, the numbers n – a1,n – a2, ... ,n –   are equal in some order to 

a1,  a2, ... , Thus, 

 

  a1 + a2 + ··· + = (n – a1)+ (n – a2) + ··· + ,n –   

       = n - (at + az + ·· · + 

) 

Hence, 

  2(a, + az + · ·· + ) = n 

leading to the stated conclusion. 

 

Example. Consider the case where n = 30. The  (30) = 8 integers that 

are less than 30 and relatively prime to it are 

      1,7, 11, 13, 17,19,23,29 

 

In this setting, we find that the desired sum is 

1 + 7 + 11 + 13 + 17 + 19 + 23 + 29 = 120 = . 30. 8 

Also note the pairings 

 

1+ 29 = 30   7+23=30   11 + 19 = 30   13 + 

17 = 30 

 



Notes 

83 

12.4.3 Theorem  
 For any positive integer n, 

 

 

 

Proof: The proof is deceptively simple. If we apply the inversion 

formula to 

 

 

the result is 

 

 

 

 

 

Let us again illustrate the situation where n = 10. As easily can be seen, 

 

 

It is easy to determine the value ofthe phi function for any positive 

integer n using above Theorem. Suppose that the prime-power 

decomposition of n is n = , and consider the product 

 

 

 

 

Multiplying this out, we obtain a sum of terms of the form 
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or, because  is known to be multiplicative, 

 

 

 

 

where the summation is over the set of divisors d =  of n. 

Hence, P = . It follows from Theorem 11.3.3 that 

 

But ( ) = 0 whenever ai  ≥ 2. As a result, the last-written equation 

reduces to 

 

 

 

 

12.5 SUMMARY 

 

Euler‘s Phi Function has been applied to subjects as diverse as 

constructible polygons and Internet cryptography 

12.6 KEYWORDS 

1. Multiple - a multiple is the product of any quantity and an integer. 

2. Consequence definition is - a conclusion derived through logic : 

inference 

3. yield - ''results in' 

4. Summation - In mathematics, summation is the addition of a 

sequence of any kind of numbers, called addends or summands; the 

result is their sum or total.  

12.7 QUESTIONS FOR REVIEW 
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1. Calculate  (1001),  5040), and  (36,000). 

 

2. Verify that the equality = =  holds when n = 

5186. 

3. Prove that the equation =  is satisfied by n = 2(2p- 1) 

whenever p and 2p- 1 are both odd primes 

4. Prove that if the integer n has r distinct odd prime factors, then 2
r
 | 

 

5. Show that if n is an odd integer, then υ(4n) = 2υ(n). 
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12.9 ANSWERS TO CHECK YOUR 

PROGRESS 

1. [HINT:Provide the explanation and representation 12.2] 

2. [HINT:Provide definition with representation12.1.1]  
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UNIT 13: CONTINUED FRACTIONS 

STRUCTURE 

13.0 Objective 

13.1 Introduction  

13.2 Continued Fraction 

13.3 Simple Continued Fraction 

13.4 Summary 

13.5 Keywords 

13.6 Questions for review 

13.7 Suggested Reading 

13.8 Answers to Check your Progress 

13.0 OBJECTIVE 

In this unit we will study properties of  Continued Fraction and Simple 

Continued Fraction. 

13.1 INTRODUCTION  

In mathematics, a continued fraction is an expression obtained through 

an iterative process of representing a number as the sum of its integer 

part and the reciprocal of another number, then writing this other number 

as the sum of its integer part and another reciprocal, and so on. 

13.2 CONTINUED FRACTION 

In this and the following section, we will describe a technique for writing 

any  real number as an iterated sequence of quotients. For example, the 

rational number 157/30 can be expanded as follows 

 

 

and the last expression is called a finite continued fraction. To expand an 

irrational number, we need infinite continued fractions; for example 
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13.2.1  Definition  

Let a0, a1, . . . , an be real numbers, all positive except possibly a0. The 

expression 

 

is called a finite continued fraction and is denoted by The 

numbers ak are called the terms or the partial quotients of the continued 

fraction. 

 

If the reader does not like the dots in the above definition, the following 

recursive definition should satisfy her completely: 

 

 

                                                     = a0 + 1/a1 

                     =   if n ≥ 2. 

 

The reason for assuming ak > 0 for k ≥ 1 in the above definition is that 

this guarantees that no division by zero will occur. A continued fraction 

with n + 1 terms can be compressed by viewing it as composed of two 

shorter continued fractions as follows, which is very useful in induction 

proofs. 
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13.2.2 Proposition  

Let 1 ≤ k ≤ n. Then 

 

Proof. The formulas should be obvious from the very definition of 

continued fractions. For a formal proof of (i), use induction on the 

number m of terms in the innermost continued fraction . 

If m = 1, that is k = n, then = an, and there is nothing to prove. If m = 

2, then = a n−1 + 1/an, and the identity (i) coincides with the 

recursive definition of  

Now suppose inductively that the identity (i) holds whenever the 

innermost continued fraction has m terms, and consider the case when 

. has m + 1 terms. By the induction hypothesis applied 

twice and the case m = 2 applied once, we obtain 

 

 

 

 

This completes the induction argument.(ii) is a special case of (i), 

obtained by taking k = 1 

13.2.3 Definition  

 Let be a sequence of real numbers, all positive exept possibly a0. 

The sequence  n=0 is called an infinite continued 

fraction and is denoted by a0, a1, a2, . . .. The infinite continued fraction 

is said to converge if the limit 

 

 

 

exits, and in that case the limit is also denoted by . In 

order to determine the convergence of a given infinite continued fraction 
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we need to consider the finite continued fractions  for 

increasing values of n. Suppose now that we have computed the value of 

  and want to compute the value of   

without having to repeat the whole computation from scratch. The 

recursion formula (ii) in Proposition 13.1.2 will then be of no use, since 

it defines   in terms of a0 and   

and not in terms of      and . Fortunately, there is an 

easy way to compute the continued fractions   in 

succession, and we will now describe this method. 

 

13.2.4 Definition  

 Let be a finite (N ∈ N) or infinite (N = ∞) sequence of real 

numbers, all positive except possibly a0, and define two sequences 

 and ecursively as follows: 

 

p−2  = 0,  p−1 = 1,  pn = anpn−1 + pn−2   if n ≥ 0, 

q−2  = 1,  q−1 = 0,  qn = anqn−1 + qn−2    if n ≥ 0. 

 

The pair (pn, qn), as well as the quotient pn/qn (where n ≥ 0), is called the 

nth  convergent of the given sequence or, equivalently, of the 

corresponding continued fraction. Obviously, q0 = 1, and qn > 0 for all n 

≥ 0. Thus, is a positive sequence. 

 

The connection between continued fractions and convergents is given by 

the next theorem, which also contains some crucial identities. 

13.2.5 Theorem  

 Let  be a sequence of real numbers, all positive except possibly 

a0, with corresponding convergents (pn, qn), and write cn = pn/qn. Then 

 

(i)   = cn,   for all n ≥ 0; 

(ii) pnqn−1 − pn−1 qn = (−1)
n−1

,  if n ≥ −1; 

(iii) cn − cn−1 = (−1)
n−1

/qn−1 qn,  if n ≥ 1; 
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(iv) pnqn−2 − pn−2qn = (−1)
n
an,  if n ≥ 0; 

(v) cn − cn−2 = (−1)nan/qn−2qn,  if n ≥ 2. 

 

Proof. (i): The case n = 0 is trivial, because c0 = p0/q0 = a0/1 = a0. 

Suppose inductively that (i) holds for all continued fractions with n 

terms, and let  be a continued fraction with n + 1 terms. 

Since 

   =  

 

and since the latter continued fraction has n terms and its (n− 1)st 

convergent equals ((an−1 +1/an)pn−2 +pn−3), (an−1 +1/an)qn−2 +qn−3), we 

conclude that 

 

 

This completes the induction step. 

 

(ii) Write zn = pnqn−1 – p n−1 qn. Using the recursive definitions, we obtain  

zn = pnqn−1 − pn−1  qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2) = pn−2qn−1 − 

pn−1 qn−2 = −zn−1,  for n ≥ 0, and it follows at once that zn = (−1)
n−1

 z−1. 

But z−1 = 1, since p−1 = q−2 = 1 and p−2 = q−1 = 0. Hence, zn = (−1) 
n−1

, as 

required. 

 

(iii) follows from (ii) upon division by qn−1 qn, which is nonzero for n ≥ 

1. 

 

(iv) Using the recursive definition of pn and qn and equality (ii), we 

obtain 

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − pn−2(anqn−1 + qn−2)  

= an(pn−1 qn−2 − pn−2 qn−1) = an(−1)
n−2

 = (−1)
n
an. 

 

(v) follows from (iv) upon division by qn−2qn. 
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Example 1 We use Theorem 13.1.5 to evaluate the continued fraction  

 

 

The computations are easily caried out by using the following table: 

 

 

 

 

The entries are computed according to the recursive formulas given in 

Definition 13.1.4. For example, to find p4 = a4p3 + p2, multiply a4 = 2 by 

the last computed p-value p3 (= −123) and add the preceding term p2 (= 

−38) to obtain p4 = 2(−123) + (−38) = −284. Finally, note that  

                                  = p5/q5 = −407/225.  

The successive convergents are −2, −9/5, −38/21, −123/68, −284/157, 

and −407/225. 

 

13.2.6 Corollary  

Let =0 be a finite or infinite sequence of real numbers, all 

positive except possibly a0, with convergents cn = pn/qn. The convergents 

c2i with even indices form a strictly increasing sequence and the 

convergents c2j+1 with odd indices form a strictly decreasing sequence, 

and c2i < c2j+1, that is c0 < c2 < ··· < c2i < ··· < c2j+1 < ··· < c3 < c1. 

 

Proof. We have cn − cn−2 = (−1)
n
an/qnqn−2, by Theorem 13.1.5 (v). Hence, 

if n ≥ 2 is even, then cn − cn−2 > 0 and if n ≥ 3 is odd, then cn − cn−2 < 0. 

 

Finally, by Theorem 13.1.5 (iii), c2k+1 − c2k = 1/q2kq2k+1 > 0. Thus, if i ≥ j, 

then c2j < c2i < c2i+1 and c2i < c2i+1 < c2j+1.  

 

Example: We computed the continued fraction  and its 

successive convergents. It is easily verified that 



Notes 

92 

 

in accordance with Corollary 13.1.6 

 

Let  be a sequence of real numbers, all positive except possibly 

a0, with convergents cn = pn/qn. By Theorem 13.1.5, cn = 

 . Corollary 13.1.6 implies that the sequence  

of convergents with even indices is strictly increasing and bounded 

above by c1. Hence, the limit c'= limk→∞ c2k exists. Similarly, the 

sequence  is strictly decreasing and bounded below by c0. 

Therefore, the limit c" = limk→∞ c2k+1 exists, too, and obviously 

c2k < c0 ≤ c"  < c2k+1 for all k 

The limit 

 

exists if and only if c' = c", that is if and only if c2k+1 − c2k → 0 as k → ∞. 

By Theorem 13.1.5, 0 < c2k+1 − c2k < 1/q2kq2k+1. Therefore, lim n→∞ qn = 

∞ is a sufficient condition for the existence of the limit c, i.e. for the 

convergence of the infinite continued fraction   . Our next 

proposition gives a condition on the sequence   which will 

guarantee that qn → ∞. 

13.2.7 Proposition  

 Let   be a sequence with convergents (pn, qn) and assume that 

there is a constant α > 0 such that an ≥ α for all n ≥ 1. Then qn → ∞ as n 

→ ∞. More precisely, there is a constant r > 1 and a positive constant C 

such that qn ≥ Cr
n
 for all n ≥ 0. The sequence   n=1 is strictly 

increasing if an ≥ 1 for all n ≥ 1 . 

 

Proof. By assumption, qn = anqn−1 + qn−2 ≥ α qn−1 + qn−2 for all n ≥ 1. Let r 

denote the positive root of the quadratic equation x
2
 = αx + 1, that is r = 

α/2 +  and let C denote the smallest of the two numbers 1 and 

a1/r. Then q0 = 1 ≥ Cr
0
 and q1 = a1 ≥ Cr

1
. We claim that qn ≥ Cr

n
 for all n 
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≥ 0. This follows by induction, because if qk ≥ Cr
k
 for 0 ≤ k ≤ n − 1, then 

qn ≥  Cr
n−1 

+ Cr
n−2 

= Cr
n−2

(αr + 1) = Cr
n−2 

· r
2
 = Cr

n
. Obviously, r > 1, so 

it follows that qn → ∞ as n → ∞. If an ≥ 1 for all n ≥ 1, then qn = anqn−1 + 

qn−2 ≥ qn−1 + qn−2 > qn−1 for all n ≥ 2, which means that the sequence 

(   is strictly increasing. 

 

13.2.8 Definition  

 A sequence    of real numbers will be called admissible if there 

is a positive constant α such that an ≥ α for all n ≥ 1. A sequence 

   consisting of integers, all positive except possibly a0, is 

obviously admissible with α = 1. In particular, for such sequences the 

corresponding sequence (qn)∞ n=1 is strictly increasing and unbounded. 

The discussion preceding Proposition 13.1.7 may now be summarized as 

follows: 

 

13.2.9 Theorem  

 Let    be an admissible sequence with convergent cn = pn/qn. 

The infinite continued fraction ξ = is then convergent, and 

it satisfies 

 

 

 

 

for all n ≥ 0. 

 

Proof. It only remains to prove (2). By (1), for each n ≥ 0, the number ξ 

belongs to the interval with endpoints cn and cn+1, and hence 

 

 

 

where the last equality follows from Theorem 13.1.5 (iii). Moreover, the 

number cn+2 lies strictly between the numbers cn and ξ. 

Consequently, 

 



Notes 

94 

 

 

where the last equality is a consequence of Theorem 13.1.5 (v). This 

completes the proof of the theorem. 

13.2.10 Theorem  

Let     be an admissible sequence of real numbers, let k be a 

positive integer, and write ξk = . Then 

 

                                 = ,  

 

Proof. Write ξ = = = . 

  

By letting n → ∞ in the relation 

 

                              = , 

we obtain 

ξ = a0 + 1/ξ1 =  . 

 

(Note that ξ1 > a1 > 0.) This proves the case k = 1. In particular, we have 

ξk = for each k. 

 

The general case now follows by induction. Assume that the theorem 

holds for a certain k ≥ 1; then 

 

ξ = , = , 

 

= , 

 

where the last equality follows from Proposition 13.1.2. This completes 

the induction step.  

 

Example Let us use Theorem 13.1.10 to compute the periodic infinite 

continued fraction ξ =  = where the bar over 
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1, 2, 3 indicates that this block of integers is repeated indefinitely. By 

periodicity, ξ =  with ξ3 = ξ, that is ξ =  . To 

compute the value of this finite continued fraction we use convergents, 

which are computed in the following table 

 

 

Solving for ξ we obtain the quadratic equation 7ξ
2
 − 8ξ − 3 = 0 with the 

roots (4 ± )/7. Since ξ > 0, we conclude that ξ = (4 

+ )/7. 

 

Example:To compute the infinite periodic continued fraction 

                               η =  

 

we start by writing η = , where ξ = , and  

 

                      η = 0 + 1/(1 + 1/ξ) = ξ/(ξ + 1).  

 

The value of ξ was computed in the previous example. Inserting ξ = (4 + 

)/7 into the expression for η, we obtain η = (1 + 

)/12. 

 

Example:  ξ =  = is the simplest possible 

infinite continued fraction. We will see later that this number plays a 

special role when it comes to approximation of irrational numbers by 

rational numbers.  

Since ξ =  ξ satisfies the equation ξ = 1 + 1/ξ, that is ξ
2 

= ξ + 1. This 

quadratic equation 
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has the roots (1± )/2, and since ξ is positive we conclude that 

= (1 + )/)/2. 

 

Check Your Progress 1 

1. Define Finite and Infinite Continued fraction.  

 

 

 

 

2.  Prove the statement: Let     be an admissible sequence of real 

numbers, let k be a positive integer, and write ξk = .  

 

 

 

 

13.3 SIMPLE CONTINUED FRACTIONS 

 

13.3.1 Definition  
 A finite or infinite continued fraction is called simple, if all its terms are 

integers. 

We recall that all terms of a continued fraction, except possibly the first 

term a0, are by default supposed to be positive. In particular, all terms of 

a simple continued fraction, except possibly the first one, are positive 

integers. 

 

This means that the terms of an infinite simple continued fraction form 

an admissible sequence (with α = 1), so there are no convergence 

problems: The infinite simple continued fractions are automatically 

convergent. 

The value of a finite simple continued fraction is a rational number. Of 

course, this follows easily from the recursive definition of finite 

continued fractions, but we can also deduce it from the following 

theorem. 
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13.3.2 Theorem  
Let (pn, qn) be the nth convergent of a finite or infinite simple continued 

fraction. The numbers pn and qn are then relatively prime integers for 

each n. Thus, the fractions cn = pn/qn, n ≥ 0, are rational numbers in 

reduced form. 

 

Proof. It follows at once from their defining recursive relations that pn 

and qn are integers when the terms an of the continued fraction are 

integers. Relative primeness is a consequence of the identity  

     pnqn−1 − pn−1 qn = (−1)
n−1. 

13.3.3Corollary  
Every finite simple continued fraction  is a rational 

number. 

Proof. Because  = pn/qn. 

 

13.3.4 Theorem  
The value of an infinite simple continued fraction is irrational. 

 

Proof. Assume ξ =  is rational and write ξ = a/b with 

integers a and b. By Theorem 13.1.9,  

    0 < |a/b − pn/qn| < 1/qnqn+1.  

 

Multiplying by bqn we obtain 

     0 < |aqn − bpn| < bqn+1 

.By choosing n so large that b/qn+1 < 1, which is possible since qn+1 → ∞, 

we obtain the inequality 0 < |aqn − bpn| < 1. Since aqn − bpn is an integer, 

this is a contradiction. 

 

13.3.5 Theorem  
 Every real number can be expressed as a simple continued fraction. The 

fraction is finite if and only if the real number is rational. 

 

Proof. Let ξ be a real number, and define a0 = [ξ]. We use the following 
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recursive algorithm to define a (possibly empty) finite or infinite 

sequence a1, a2, . . . of positive integers. 

 

Step 0: If ξ = a0, then ξ = , and the algorithm stops. Otherwise, 0 < ξ 

− a0 < 1, and we define ξ1 = 1/(ξ − a0), noting that ξ1 > 1 and that ξ = 

 We then proceed to step 1. 

 

Step k for k = 1, 2, . . . : Suppose the positive integers a1, a2, . . . , ak−1 

and the real number ξk > 1 have been defined and that ξ = 

,. Define ak = [ξk].  

If ξk = ak, then ξ = , and the algorithm stops. 

Otherwise, define ξk+1 = 1/(ξk − ak), which is then a real number > 1, note 

that ξk = , and ξ = ,and 

proceed to step k + 1. 

 If the algorithm stops, then ξ is a finite simple continued fraction. 

Otherwise it defines an infinite sequence (an)∞ n=0. Define η = ha0, a1, 

a2, . . .i, and let cn = pn/qn denote the nth convergent of the infinite 

continued fraction η. Since ξ = , , the numbers 

cn−1 and cn are also convergents of ξ. It therefore follows from Theorem 

13.1.9 and Corollary 13.1.6 that ξ and η both lie between the numbers c 

n−1 and cn. Hence,  

 

|ξ − η| < |cn − cn−1| =  

. 

Since qn → ∞ as n → ∞, we conclude that ξ = η =  

 

Example  Using the algorithm of Theorem 13.2.5 we compute the 

continued fraction expansion of  as follows: 

a0 = [ ] = 1,   ξ1 = 1/(ξ − a0) = 1/( − 1) =  + 1; 

a1 = [ξ1] = 2,   ξ2 = 1/(ξ1 − a1) = 1/(  − 1) = + 1 = ξ1. 

 

Since ξ2 = ξ1, we conclude that a2 = a1 and ξ3 = ξ2, etc. Hence, an = a1 = 2 

for all n ≥ 1.  
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Therefore,  =  = . 

 

Since k = k − 1 + 1/1, any integer k can be written in two ways as a 

simple continued fraction: k = = = It follows that every 

rational number has at least two different representations as finite simple 

continued fractions, because if  is a representation with an 

> 1, then  

                  is a different representation ending in 1.  

Conversely, if  is a continued fraction ending in 1, then 

= . 

However, these are the only different ways to represent a rational number 

as a simple continued fraction. For the proof of this fact we shall need 

the following lemma. 

 

13.3.6 Lemma  
 Let a0, b0 be integers, let a1, a2, . . . , an be positive integers, and let x, y 

be two real numbers ≥ 1. Then 

 

(1) b0 = ⇒ x = 1 and a0 = b0 – 1 

 

(2) a0 ≠ b0 ⇒ ⇒ ≠ ⇒ 

 

(3)  =  ⇒ x = y 

 

Proof. (1): Suppose b0 =  and x > 1. Then 

 

 a0 < = b0 = a0 + 1/x < a0 + 1, 

 

which is a contradiction, since b0 is an integer.  

Hence, x = 1, and b0 = a0 + 1. 

 

(2): Suppose a0 < b0; then  = a0 + 1/x ≤ a0 + 1 ≤ b0 <  
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(3): If ⇒i = ⇒ then obviously x = y, so the assertion holds 

when n = 0. Now suppose that the implication is true with n replaced by 

n − 1, and assume that  =   Since 

 = and the other continued 

fraction may be shortened analogously, it follows from our induction 

hypothesis that first = , and then x = y. 

13.3.7 Theorem  
Each integer k has exactly two representations as simple continued 

fractions, viz. and  Each nonintegral rational number has 

exactly two representations as simple continued fractions, and they are of 

the  form ha0, a1, . . . , ani and ha0, a1, . . . , an − 1, 1i, where n ≥ 1 and 

an > 1. Each irrational number has a unique representation as an infinite 

simple continued fraction. 

 

Proof. We have already noted that each rational number has two 

different representations as finite simple continued fractions, and that 

each irrational has one representation as infinite simple continued 

fraction, so it suffices to prove that these representations are the only 

one. 

First assume that k is an integer and k =   = 

   with n ≥ 1. It then follows from Lemma 13.2.6 (1) that 

a0 = k − 1 and x =   = 1. If n ≥ 2, then x > a1 ≥ 1, which is 

impossible.  

Hence n = 1 and a1 = 1, that isk = and , 1i are the only 

representations of k 

as a simple continued fraction. 

Let now   =   be two representations of a 

nonintegral rational number, and assume that m ≥ n. Suppose there is an 

index k < n such that ak ≠ bk, and let k denote the least such index. 

Writing the continued fraction   as 

and  similarly for   we then 
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conclude, using Lemma 13.2.6 (3), that 

  =   or equivalently that 

 

 =  

 

However, this is impossible because of (2). Thus, ak = bk for all k < n and 

we conclude using (3) that an =   But an is an integer, and we 

already know that there are only two possible representations of integers 

as simple continued fractions; either m = n and an = bn, or m = n+1, bn = 

an−1 and bn+1 = 1. 

 

Let finally ξ be an irrational number, and suppose ξ = = 

are two different representations of ξ. Then there is a first 

index k such that ak ≠ bk, and we conclude from (3) that  

 

 =  

However, this contradicts (2). 

Check Your Progress 2 

3.  What is simple continued fraction ?  

 

 

 

 

4. Prove - Every real number can be expressed as a simple continued 

fraction. The fraction is finite if and only if the real number is rational  

 

 

 

13.4 SUMMARY 

Continued fractions are, in some ways, more "mathematically natural" 

representations of a real number than other representations such 

as decimal representations, and they have several desirable properties 
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13.5 KEYWORDS 

1.Succession - In math, the terms successor directly after a given 

number. 

2.partial quotient refers to a method used in solving large 

division mathematical problems.  

3.Recursion (adjective: recursive) occurs when a thing is defined in 

terms of itself or of its type 

4.Coincide definition is - to occupy the same place in space or time. 

13.6 QUESTIONS  FOR REVIEW 

 

1.Prove that if the irrational number x > 1 is represented by the infinite 

continued fraction [a0 ; a1, a2 , ...], then 1/x has the expansion [0; a0 ; a1, 

a2 , ...], Use this fact to find the value of [0; 1, 1, 1, ...] = [0; T]. 

2. Evaluate [1; 2, ] and [1; 2, 3, ]. 

3. Determine the infinite continued fraction representation of each 

irrational number below:  

4.Given the infinite continued fraction [1; 3, 1, 5, 1, 7, 1, 9, ...], find the 

best rational approximation a/b with 

denominator b < 25. 
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13.8 ANSWERS TO CHECK YOUR 

PROGRESS 

 

1.  [HINT: Provide the definition and representation 13.1.4] 

2. [HINT: Provide the proof 13.1.10] 

3. [HINT:Provide the definition and example 13.2.1] 

4. [HINT:Provide the proof 13.2.5] 
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UNIT 14: PERIODIC CONTINUED 

FRACTION AND PELL’S EQUATION 

STRUCTURE 

 

14.0 Objective 

14.1 Introduction 

14.2  Periodic Continued Fractions 

14.3  Continued Fraction Expansion of  

14.4  Pell‘s Equation 

14.5  Summary 

14.6  Keywords 

14.7  Questions 

14.8  Suggested Readings 

14.9  Answers to Check Your Progress 

14.0 OBJECTIVE 

Understand the concept of Periodic Continued Fractions 

Understand the concept of Continued Fraction Expansion of  

Understand the concept of Pell‘s Equation 

14.1 INTRODUCTION 

 

In above unit we computed some periodic simple continued fractions and 

found that they were roots of quadratic equations with integer 

coefficients. The goal of this section is to prove that this property 

characterizes the periodic simple continued fractions, that is an irrational 

number has a periodic continued fraction expansion if and only if it 

satifies a quadratic equation with integer coefficients. 

14.2 PERIODIC CONTINUED FRACTIONS 

14.2.1 Definition  

 An infinite sequence is called periodic if there is a non-zero 

integer p and an integer m such that  
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      an = an+p for all n ≥ m. 

 

The integer p is called a period of the sequence. If p and q are two 

different periods for the sequence, then p − q is a period, too, because 

an+p−q = an+p−q+q = an+p = an for all sufficiently large integers n. Thus, 

the set of all periods together with the number 0 is an ideal in Z. It 

follows that there exists a smallest positive integer r such that all periods 

of the sequence are multiples of r.  

 

This uniquely determined number is called the period and the period 

length of the sequence. 

 

A periodic sequence with period p > 0 can be written in the form 

    b0, b1, . . . , bm−1, c0, c1, . . . , cp−1, c0, c1, . . . , cp−1, . 

. .  

      = b0, b1, . . . , bm−1,  

where the bar over the c0, c1, . . . , cp−1 indicates that this block of 

numbers is repeated indefinitely. 

A periodic sequence with period p > 0 is called purely periodic if 

an = an+p holds for all n ≥ 0. Purely periodic sequences are of the form 

a0, a1, . . . , ap−1. 

 

14.2.2 Definition  
 An infinite continued fraction is called (purely) periodic if 

the corresponding sequence  of terms is (purely) periodic. Of 

course, the period of a periodic continued fraction is by definition the 

period of the sequence of terms. 

 

Let ξ = be a continued fraction and write 

      ξk =  

 

If ξ is a periodic continued fraction with period p, then obviously there is 

an integer m such that ξn = ξn+p holds for all n ≥ m. Conversely, if ξn+p 
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= ξn holds for some number n, then ξ is a periodic continued fraction 

with p as a period (and the period r is some divisor of p). 

 

14.2.3 Definition  
An irrational number ξ is called a quadratic irrational (or algebraic of 

degree two) if it is the root of a quadratic polynomial with integer 

coefficients, that is if aξ
2
 + bξ + c = 0 for suitable integer coefficients a, 

b, and c with a ≠0. 

 

14.2.4 Proposition  
 A real number ξ is a quadratic irrational if and only if it has the form ξ = 

r + s , where d is a positive integer that is not a perfect square, r and s 

are rational numbers and s ≠ 0. 

 

Proof. Any real irrational solution of a quadratic equation ax
2 

+ bx + c = 

0 obviously has this form. Conversely, a real number of this form is 

irrational and satisfies the quadratic equation (x − r)
2
 = s

2
d, which can be 

turned into a quadratic equation with integer coefficients upon 

multiplication by the squares of the denominators of r and s. 

14.2.5 Definition  

 Let d be a positive integer that is not a perfect square. We define Q[  ] 

to be the set of all real numbers ξ of the form ξ = r + s , with r and s 

rational. The number ξ0 = r − s is called the conjugate of ξ. 

 

14.2.6 Proposition 

 Q[ ] is a number field, that is if ξ and η are numbers in Q[√d ], then 

their sum ξ + η, difference ξ − η, product ξη, and quotient ξ/η also belong 

to Q[√d ], the quotient of course provided η ≠ 0. 

 

14.2.7 Proposition  
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 Suppose ξ, η ∈ Q[√d ]. Then (ξ + η)' = ξ' + η', (ξ − η)' = ξ' – η', (ξη)' = 

ξ'η', and (ξ/η)' = ξ'/η'. 

 

14.2.8 Proposition  
 If the number ξ has a periodic simple continued fraction expansion, then 

ξ is a quadratic irrational. 

 

Proof. Being an infinite continued fraction, ξ is irrational. We will prove 

that ξ ∈ Q[√d ] for a suitable positive integer d that is not a perfect 

square. 

Assume  

     ξ =    

 

and let η =  Then η =   

 

Let (pk, qk) be the convergents of the continued fraction 

 

Then  

 

 

 

and solving for η we see that η satisfies a quadratic equation with integer 

coefficients. Hence, η is a quadratic irrational, that is η ∈ Q[√d ] for a 

suitable positive integer d that is not a perfect square. 

Similarly, in terms of the convergents (Pk, Qk) of , we 

have 

 

  

  

so by Proposition 14.1.6, ξ belongs to Q[√d ]. 

The converse of Proposition 14.1.8 is true, that is every quadratic 

irrational has a periodic simple continued fraction expansion. The proof 

of this needs some preparatory work. 
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14.2.9 Lemma  
 If ξ is a quadratic irrational, then ξ can be written in the form 

 

 

 

where d is an integer that is not a perfect square, u and v are integers, and 

v | (d − u
2
). 

 

Proof. By Proposition 14.1.4, ξ = r + s , where D is an integer that is 

not a perfect square, r and s are rational numbers and s ≠ 0. We can 

obviously write   r = a/c and s = b/c, where a, b, and c are integers and b 

> 0. Then 

 

 

 

 

and the integers u = a|c|, v = c|c| and d = b
2
c

2
D satisfy the requirement v | 

(d − u
2
). Suppose ξ0 is a quadratic irrational. Using Lemma 14.1.9, we 

first write ξ0 = (u0 + )/v0, where d is an integer that is not a perfect 

square, and u0 and v0 are integers, and v0 | (d − ). 

We then recall the recursive algorithm in Theorem 13.1.5 for obtaining 

the continued fraction expansion of of ξ0. The terms an are 

given by and we have ξ0 =   for all n. 

Now suppose inductively that ξn = (un + )/vn, with integers un and vn 

that satisfy vn | (d − u
2
 n). Then 
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where un+1 = anvn − un and vn+1 = (d − )/vn. 

 

Clearly, un+1 is an integer and un+1 ≡ −un (mod vn). Hence by the 

induction assumption, 

d − ≡ d − ≡ 0 (mod vn), that is vn divides d − . Therefore, 

vn+1 is also an integer, and vn+1 | (d − ), because vnvn+1 = d − . 

 

By induction, we have thus proved the validity of the following 

algorithm: 

 

14.2.10 Theorem  

Suppose ξ0 = (u0 + )/v0, where d is a positive integer that is not a 

perfect square, u0 and v0 are integers and v0 | (d − ). Define 

recursively the sequences  , ,   and   as follows: 

 

Then un and vn are integers, vn | (d − ), and ξ0 =  

for all n, and ξ0 =  

 

Example: Let us compute the continued fraction expansion of the 

number (1 − )/3 using the algorithm of Theorem 14.1.10. Since 36 | (5 

− 12), we first have to put the number in the form of Lemma 23.9. 

Multiplying numerator and denominator by −3, we obtain 
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that is u0 = −3, v0 = −9, and d = 45. 

Now v0 | (d−u2 0), so we can start the algorithm. The result of the 

computations is shown in the following table 

 

Since (u9, v9) = (u3, v3), we conclude that ξ9 = ξ3. Thus, 

 

 

 

 

14.2.11 Lemma  
 Let ξ be a quadratic irrational and define ξn as in Theorem 14.1.10. If 

the conjugate < < 0 for some index k, then −1 < < 0 for all n > k. 

 

Proof. By induction, it suffices to prove that < < 0 implies −1 < < 

+1 < 0. So assume < < 0. Using the relation ξn+1 = 1/(ξn − an) and 

taking conjugates, we obtain ξn 0 +1 = 1/(  − an). Since an ≥ 1, the 

denominator < − an is strictly less than −1, so it follows that −1 < < 

+1 < 0. 

 

14.2.12 Lemma  

 Let ξ be a quadratic irrational, and define ξn and an = [ξn] as above. If −1 

< < 0, then an = [−1/ ]. 

Proof. We have  = 1/( − an), whence −1/ +1 = an − . Since 0 

< − < 1, it follows that [−1/ ].] = [an −  ] = an. 

 

14.2.13 Lemma  

 If ξ is a quadratic irrational, then there exists an index k such that < 0. 
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Proof. Let (pk, qk) denote the kth convergent of ξ. Since ξ = 

, we have 

 

 

 

and solving for ξn we obtain 

 

 

 

By taking conjugates, we get 

 

 

 

We now use the fact that the convergents pn/qn converge to ξ as n tends 

to infinity and that ξ' ≠ ξ. It follows that the expression within 

parenthesis converges to (ξ' − ξ)/( ξ' − ξ), that is to 1, as n tends to 

infinity. Consequently, the expression within parenthesis is certainly > 0 

when n is big enough, that is has the same sign as −qn−2/qn−1, 

which is negative since qn is positive for all n ≥ 0. 

 

14.2.14 Theorem  
 A real number ξ has a periodic simple continued fraction expansion if 

and only if it is a quadratic irrational. 

 

Proof. We have already proved that a periodic continued fraction is a 

quadratic irrational (Proposition 14.1.8). To prove the converse, let ξ = ξ '  

be a quadratic irrational and write 

 

 

 

as in Theorem 14.1.10. By Lemma 14.1.13, there is an index k such that 

< 0, 

and by Lemma 14.1.11, −1 < < 0 for all n > k. Since ξn > 1 for 

all n ≥ 1, we conclude that 
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for all n > k. Hence 0 < vn < 2  and un > 0 if n > k. Moreover, 

using the relation d − = vnvn+1 > 0, we obtain = < 

d, that is un+1 <  for n > k. Thus, if n > k + 1, then 0 < un < 

 and 0 < vn < 2 . Hence, the ordered pairs (un, vn) 

can assume only a fixed number of possible pair values, and so there are 

distinct integers i and j with j > i such that uj = ui and vj = vi. This implies 

that ξi = ξj = ξi+(j−i), and hence ξ has a periodic continued fraction 

expansion. 

 

14.2.15 Definition  

 A quadratic irrational ξ = r + s  is called reduced it ξ > 1 and 

its conjugate ξ0 = r − s . satisfies −1 < ξ0 < 0. 

 

14.2.16 Theorem  

The simple continued fraction expansion of the real quadratic irrational 

number ξ is purely periodic if and only if ξ is reduced. Also, if ξ = 

,, then −1/ξ0 = . 

 

Proof. Suppose ξ = ξ0 is a reduced quadratic irrational, and use Theorem 

14.1.10 to write ξn = (un + )/vn. Since −1 < ξ0 0 < 0 by 

assumption, we have −1 < ξn 0 < 0 and an = [−1/ξn 0 +1] for all n ≥ 0 by 

Lemma 14.1.11 and Lemma 14.1.12. We know from Theorem 14.1.14 

that ξ has a simple periodic continued fraction expansion. Let r be the 

period length; then there is a smallest number m ≥ 0 such that  

    ξn+r = ξn for all n ≥ m. 

 

We must prove that m = 0. 

Assume m ≥ 1. Starting from ξm = ξm+r we first obtain = 
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+r by taking conjugates, and hence am−1 = [−1/ ] = 

[−1/ ] = am+r−1. Since 

 

 

 

 

we then conclude that ξm−1+r = ξm−1, which violates the definition of 

m. Thus  m = 0, and ξ is purely periodic. 

 

Conversely, suppose that ξ is purely periodic, say ξ = , 

where a0, a1, . . . , ar−1 are positive integers. Then ξ > a0 ≥ 1. Let (pn, qn) 

denote the nth convergent of ξ; then 

 

 

 

 

Thus ξ satisfies the quadratic equation 

f(x) = qr−1 x
2
 + (qr−2 − p

r−1
)x − pr−2 = 0. 

 

This equation has two roots, ξ and its conjugate ξ' .Since ξ > 1, we need 

only prove that f(x) has a root between −1 and 0 to establish that −1 < ξ' 

< 0. We will do this by showing that f(0) < 0 and f(−1) > 0. 

 

Note that pn is positive for all n ≥ −1 (since a0 > 0). Hence, f(0) = −pr−2 < 

0. Next we see that f(−1) = qr−1 − qr−2 + pr−1 − pr−2 = (ar−1 − 1)(qr−2 + pr−2) 

+ qr−3 + pr−3  

≥ qr−3 + pr−3 > 0. 

 

Thus, ξ is reduced. Finally, to prove that −1/ξ0 has the stated continued 

fraction expansion, we suppose that ξ = ,. Taking 

conjugates in the relation ξn = 1/(ξn−1 − an−1) we obtain = = 1/( =  −1 − 

an−1), which can be rewritten as 

 

 



Notes 

114 

 

Since −1/ > 1 for all n, the above equation can be expressed as a 

continued fraction expansion 

     

−1/  = 

. 

Starting with −1/ ξ ', iterating and using the fact that ξ = ξ ' = ξr, we thus 

obtain  

−1/ ξ '  = −1/  = −1/  =  = = . . . 

 

=  

 

Hence, −1/ξ' =   

 

Example:  The quadratic irrational (2 + √10)/3 is reduced. Its continued 

fraction expansion is easily computed with the aid of Theorem 23.10. 

Since 3 | (10 − 22), we can start with u0 = 2, v0 = 3 and d = 10. The 

computations are summarized in the following table: 

 

 

 

 

 

Since (u3, v3) = (u0, v0), the period is 3 and (2 + )/3 =  

 

Check Your Progress 1 

1. Define Quadatic irrational and pure periodic continued fraction.  

 

 

 

 

2. Explain ‗A real number ξ has a periodic simple continued fraction 

expansion if and only if it is a quadratic irrational‘.  
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14.3 CONTINUED FRACTION 

EXPANSION OF  

 

14.3.1Theorem  

Let d be a positive integer that is not a perfect square. The simple 

continued fraction expansion of is of the form 

       

 

where a0 = [ ] and aj = ar−j  for j = 1, 2, ..., r − 1. 

 

Proof.  Let a0 = [  ] and ξ = a0 + . Then ξ is reduced, because ξ > 1 

and ξ' = a0 −  satisfies −1 < ξ0 < 0. By Theorem 23.16, ξ has a purely 

periodic continued fraction expansion starting with [ξ] = 2a0, say 

 

(1)   ξ = a0 +  =  = 

 

 

If we subtract a0 from each side, we get 

 

 =   

To prove that the sequence a1, a2, . . . , ar−1 is ―symmetric‖, we note that 

By Theorem 14.1.16, 

−1/ξ' =  

and hence 

ξ =  
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A comparison with (1) gives aj = ar−j  for 1 ≤ j ≤ r − 1. 

Example: To compute the continued fraction expansion of  we use 

Theorem 14.1.10 with u0 = 0, v0 = 1 and d = 19. We get the following 

table: 

 

 

 

 

 

It follows that the expansion has period length 6, and that  = 

 

 

14.3.2 Theorem  

 Let (pn, qn) denote the nth convergent of d, let the integers un and vn be 

defined for the number ξ = as in Theorem 14.1.10, that is ξn = (un + 

)/vn with vn | (d − u
2
n), and let r be the period length of the continued 

fraction expansion of ). Then 

(i)  − = (−1)
n−1

 vn+1 for every n ≥ −1; 

(ii) vn > 0 for every n ≥ 0; 

(iii) vn = 1 if and only if r | n. 

 

Proof. Write = , =  

 

(i) We have 

 

which can also be written as 

 

un+1 pn + vn+1 pn−1 − dqn − (un+1 qn + vn+1 qn−1 − pn) = 0. 

Since is irrational, it follows that 
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Eliminating un+1 from this system, we obtain 

 

 − =  vn+1(pnqn−1 − qn pn−1) = (−1)
n−1

 vn+1, 

 

 

(ii) The convergents pn/qn are >  if n is odd and < if n is even. 

Therefore,  − has the same sign as (−1)n−1, so it follows from (i) 

that vn+1 is positive for every n ≥ −1. 

 

(iii) Since ξ =  has period length r, ξkr+1 = ξ1 for all positive integers 

k. It follows that 

 

 

 

 

that is ξkr = akr − a0 + Hence, vkr = 1 (and ukr = akr − a0). 

Conversely, assume vn = 1; then ξn = un + so  

   an = [ξn] = un + [  ] = un + a0  

and  

   ξn − an = − a0 = ξ0 − a0,  

that is ξn+1 = 1/(ξn − an) = 1/(ξ0 − a0) = ξ1.  

 

It follows from this that n is a multiple of the period length r. The reader 

may have noted in the few examples of continued fraction expansion of 

√d that we have given, that the numbers appearing in the period of 

were all less than or equal to a0 except for the last one, which equals 

2a0. This holds in general. 

 

14.3.3 Proposition  
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 Let = , i. Then an ≤ a0 for 1 ≤ n ≤ r − 1. 

 

Proof. With ξ = ξ0 =  ,let ξn = (un + )/vn be as in Theorem14.1.10 

and suppose 1 ≤ n ≤ r − 1. Then vn ≥ 2 by the previous theorem, and 

using Lemma 14.1.11 we conclude that ξn' = (un − )/vn < 0, because 

ξ0' = − < 0. 

It follows that un − < 0, that is un < and hence ξn < 2 /vn ≤ . 

Finally, an = [ξn] ≤ [ ] = a0. 

14.4 Pell’s Equation 

The equation x
2
 − dy

2
 = N, with given non-zero integers d and N, is 

called Pell‘s equation. If d is negative, Pell‘s equation can have only a 

finite number of solutions in integers, since x
2
 ≤ N and y

2 
≤ −N/d. 

If d = a
2
 is a perfect square, then we have (x + ay)(x − ay) = N, and again 

there is only a finite number of integral solutions to Pell‘s equation, since 

there is only a finite number of ways to factor N. 

We will therefore suppose that d is a positive integer that is not a perfect 

square. We will show that in that case there is either no solution at all or 

infinitely many solutions in integers. When N = ±1, we will give a 

complete description of the set of solutions. 

 

If (u, v) is an integral solution of Pell‘s equation x
2
−dy

2
 = N, then (±u, 

±v) is also a solution for every combination of the signs. Thus, in order 

to find all integral solutions it suffices to find all positive solutions, that 

is all solutions (u, v) with u > 0 and v > 0. If N is a perfect square, there 

will of course be two additional trivial solutions (±√N, 0), and if −N/d 

happens to be an integer that is a perfect square, (0, ± p−N/d) are two 

trivial solutions of Pell‘s equation. 

 

If (x1, y1) and (x2, y2) are two positive solutions of x
2
 − dy

2
 = N, then 

−  = d( − ), and hence x1 < x2 if and only if y1 < y2. Thus, if we 

order the positive solutions according to increasing x-value or according 

to increasing y-value we will get the same result. If there is a positive 
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solution in integers of Pell‘s equation, then there is obviously a positive 

solution (x1, y1) with a least positive x-value. This solution has also the 

least y-value among all positive solutions. Since it plays a special role we 

introduce the following definition. 

14.4.1 Definition  
 Suppose Pell‘s equation x

2
 − dy

2
 = N has positive integral solutions. The 

fundamental solution, or least positive solution, is the positive solution 

(x1, y1) such that x1 < u and y1 < v for every other positive solution (u, v). 

The following theorem gives a connection between Pell‘s equation and 

continued fractions. 

 

14.4.2 Theorem  
 Let d be a positive integer that is not a perfect square, and suppose |N| < 

. If (u, v) is a positive solution in integers of x
2
 − dy

2
 = N,then there is 

a convergent (pn, qn) of the simple continued fraction expansion of  

such that u/v = pn/qn.  

Remark. The numbers u and v need not be relatively prime, but if c is 

their greatest common divisor, then obviously c
2
 | N. Hence, if N is 

square-free, and in particular if N = ±1, then u and v are necessarily 

relatively prime. That means that there is an index n such that u = pn and 

v = qn. 

 

Proof. We will consider a more general situation. Let d and N be any 

positive real numbers, not necessarily integers, such that  is irrational 

and N <  and assume that u and v are positive integers satisfying u
2
 − 

dv
2
 = N. 

Since 

 

 

and the second factor of the left hand side is positive, we first conclude 

that u/v − > 0, and consequently u/v +  > 2 Hence 
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u/v is a convergent of . Let now d and N be as in the statement of the 

theorem. The case N > 0 is a special case of what we have just proved. If 

N < 0, we rewrite the equation as y
2
 − (1/d)x

2
 = −N/d. Since 0 < −N/d < 

/d = p1/d, we can apply the general case above, and we conclude that 

v/u is a convergent of 1/ . Suppose has the continued fraction 

expansion ha0, a1, a2, . . . i. Then 1/√d = h0, = 

Hence, there is an n such that 

 

 u/v = is a convergent of  

 

 

 

 

By combining the theorem above with Theorem 14.2.2, we get a 

complete description of the solution set of Pell‘s equation in the case N = 

±1 

14.4.3 Theorem  
 Suppose d is a positive integer that is not a perfect square, let r be the 

period length of the simple continued fraction expansion of , and let 

be the corresponding sequence of convergents. 

 

(i) Suppose r is even. Then 

(a) x
2
 − dy

2
 = −1 has no solutions in integers; 

(b) all positive integral solutions of x
2
 − dy

2
 = 1 are given by x = pkr−1,y = 

qkr−1 for k = 1, 2, 3, . . . , with x = pr−1 and y = qr−1 as the fundamental 

solution. 

 

(ii) Suppose r is odd Then 

(a) all positive integral solutions of x
2
 −dy

2
 = −1 are given by x = pkr−1,y 

= qkr−1 for k = 1, 3, 5, . . . , with x = pr−1 and y = qr−1 as the fundamental 

solution; 
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(b) all positive integral solutions of x2 − dy2 = 1 are given by x = pkr−1, y 

= qkr−1 for k = 2, 4, 6, . . . , with x = p2r−1 and y = q2r−1 as the fundamental 

solution. 

 

Proof. By the previous theorem, the positive integral solutions of x
2
−dy

2
 

= ±1 are to be found among the convergents (pn, qn). Furthermore, a0 = 

[ ] ≥ 1, so the sequence is strictly increasing. 

Therefore, the first solution that appears in the sequence (pn, qn) will be 

the fundamental solution. 

 

According to Theorem 14.2.2,  − = (−1)
n−1

 vn+1, 

where vn ≥ 1 for all n and vn = 1 if and only if r | n. Thus, |  − 

2| ≥ 2 except when n = kr – 1 for some non-negative integer 

k, in which case  

     −  = (−1)kr. 

 

If r is even, then (−1)
kr

 = 1 for all k, and hence (pkr−1, qkr−1) is a solution 

of x
2
 − dy

2
 = 1 for all k, whereas the equation x

2
 − dy

2
 = −1 has no 

positive solution, and of course no solution at all in integers. This proves part (i). If the 

period length r is odd, then (−1)kr = 1 for k even, and = −1 for k odd, and this proves part 

(ii). 

 

Example: We shall use Theorem 14.3.3 to find the fundamental solution 

of the equation x
2
 − 19y

2
 = 1. 

 

The continued fraction expansion  = was found in 

the previous section. Since the period length is 6, the fundamental 

solution is (x, y) = (p5, q5). The convergents are computed in the 

following table: 
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Thus, the fundamental solution is (x, y) = (170, 39). 

14.4.4 Lemma  
 

Let (x1, y1) be an arbitrary integral solution of x
2
 − dy

2
 = M and (x2, y2) 

an arbitrary integral solution of x
2
 − dy

2
 = N, and define the integers u 

and v by 

     (x1 + y1 ) (x2 + y2 )) = u + v )  

that is u = x1x2 + y1y2d, v = x1y2 + x2y1. Then (u, v) is a solution of x
2
 − 

dy
2
 = MN. If (x1, y1) and (x2, y2) are positive solutions, then (u, v) is also 

positive. 

 

Proof. By taking conjugates we have (x1 − y1 )(x2 − y2 ) = u − v  

and hence 

 

  u
2
 − dv

2
 = (u + v )(u − v )  

   = (x1 + y1 )(x2 + y2 )(x1 − y1 )(x2 − y2 ) 

       

= ( − 

d )( − d ) = 

MN. 

 

The solution (u, v) will obviously be positive if the original ones are 

positive. 

14.4.5 Corollary  
 If the equation x

2
 − dy

2 
= N has an integral solution, then it has infinitely 

many integral solutions. 

 

Proof. Suppose the equation x
2
 − dy

2
 = N has at least one integral 

solution. This solution multiplied by any solution of x
2
 − dy

2
 = 1 yields 

another solution of x
2
 − dy

2
 = N. Since the equation x

2 
− dy

2
 = 1 has 

infinitely many integral solutions, there will also be infinitely many 

integral solutions of x
2 

− dy
2
 = N. 

14.4.6 Theorem  
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 Let (x1, y1) be the fundamental solution of x
2 
− dy

2
 = 1. Then all positive 

integral solutions are given by (xn, yn), n ≥ 1, where the integers xn and 

yn are recursively defined by 

    x n+1 = x1xn + y1ynd, yn+1 = x1yn + y1xn. 

 

Proof. Note that xn+1 + yn+1  = (x1 + y1 )(xn + yn ) = (x1 + y1 

)
n+1

. 

Hence by Lemma 14.3.4 with M = N = 1, if (xn, yn) is a positive solution 

of Pell‘s equation x
2
 − dy

2
 = 1, then (xn+1, yn+1) will also be a positive 

solution. It therefore follows by induction, that (xn, yn) is a solution for 

all n. It remains to show that every positive integral solution is obtained 

in this way. Suppose there is a positive solution (u, v) that is not of the 

form (xn, yn). 

Since x 

n forms an increasing sequence, there must be some integer m such that 

xm ≤ u < xm+1. It follows that ym ≤ v < ym+1, because we get the same 

result if positive solutions are ordered according to their x-value or y-

value. We cannot have equality, because u = xm would imply v = ym. 

Now (xm, −ym) is of course also a (non-positive) solution of x
2
 − dy

2
 = 1, 

so by Lemma 14.3.4 we 

will obtain another solution (s, t) by defining 

 

so (s, t) is a positive solution. Therefore, s > x1 and t > y1, but this 

contradicts s + t  < x1 + y1 . This contradiction shows that every 

integral solution (u, v) must be of the form (xn, yn). 
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Example : In above Example, we showed that the fundamental solution 

of x
2 
− 19y

2
 = 1 is (x1, y1) = (170, 39).  

Using the recursion formulas  

xn = x1xn + 19y1yn, yn = x1yn + y1xn, 

 

we can compute the next positive solutions. They are 

(x2, y2) = (57 799, 13 260) 

(x3, y3) = (19 651 490, 4 508 361) 

(x4, y4) = (6 681 448 801, 1 532 829 480) 

 

Just as in the case of x
2
−dy

2 
= 1, further solutions of the equation x

2
−dy

2
 

= −1 can be found from its fundamental solution.  

14.4.7 Theorem  
 Suppose that x

2
 − dy

2
 = −1 has an integral solution, and let (x1, y1) 

denote the fundamental solution. For n ≥ 1, define positive integers xn 

and yn recursively as in Theorem 25.6, i.e. (xn + yn ) = (x1 + y1 )n. 

Then all positive integral solutions of x
2
 − dy

2
 = −1 are given by (xn, yn) 

with n odd, and all positive integral solutions of x
2
 − dy

2
 = 1 are given by 

(xn, yn) with n even. In particular, (x2, y2) is the fundamental solution of 

x
2
 − dy

2
 = 1 

 

Check Your Progress 2 

3. What is Pell‘s Equation? Explain ‗If the equation x
2
 − dy

2 
= N has an 

integral solution, then it has infinitely many integral solutions.‘ 

 

 

 

 

4. What do you understand by continued expansion fraction of   

 

 

 

14.5 SUMMARY 
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The property characterizes the periodic simple continued fractions, that is 

an irrational number has a periodic continued fraction expansion if and 

only if it satifies a quadratic equation with integer coefficients. 

14.6 KEYWORDS 

1.Sequence : a sequence is an enumerated collection of objects in 

which repetitions are allowed. 

2.Irrational Number. An irrational number is a number that cannot 

be expressed as a fraction for any integers. Irrational numbers have 

decimal expansions that neither terminate nor become periodic 

3.Conjugate - A math conjugate is formed by changing the sign 

between two terms in a binomial. For instance, the conjugate of x + y is 

x - y. 

4.Index - Indices are a mathematical concept for expressing very large 

numbers. They are also known as powers or exponents. 

5. Integral solution  : is a solution such that all the unknown 

variables take only integer values. 

14.7 QUESTIONS FOR REVIEW  

1. If x0 , y0 is a positive solution of the equation x 
2
 – dy 

2
 = 1, prove that 

x0 > y0 . 

2. By the technique of successively substituting y = 1, 2, 3, ... into dy 2 + 

1, determine the smallest positive solution of x 
2
 - dy

2
 = 1 when d is 7 

3. Find all positive solutions of the following equations for which y < 

250: x
2
 - 2y

2
 = 1. 

4. If d is divisible by a prime p =3 (mod 4), show that the equation x 
2
 - 

dy
2
 = -1 has no solution. 
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14.9 ANSWERS TO CHECK YOUR 

PROGRESS 

1. [HINT: Provide the definition with example  14.1.3 & 14.1.16] 

2. [HINT: Provide the proof of above statement 14.1.14] 

3. [HINT: Provide the definition of Pell equation 14.3.1and proof of 

the statement14.3.5] 

4. [HINT: Provide the theorem and proof of 14.3.2] 

 


